Skip to main content
Log in

Effect of Terminal Drought on Arginine Content in Peanut Genotypes with Difference in Levels of Drought Resistance

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Drought is a problem for peanut production as drought at any growth stage generally reduces pod yield and alters protein and amino acid compositions in kernels. The aim of work was to examine effects of terminal drought on arginine content in kernels of peanut genotypes with different levels of drought tolerance. Five peanut genotypes were planted under two water treatments, field capacity (FC) and 1/3 available water (1/3 AW). Arginine content, physiological traits and pod yield were recorded at harvest. The results showed that drought increased arginine content in sensitive and resistant genotypes, and the increase in arginine content was highest in sensitive genotype (Tainan 9). The variation in arginine content in peanut depended on peanut genotype rather than the level of drought resistance. No correlation between arginine content and drought-resistance physiological traits and pod yield were not found. These findings indicated that arginine content and resistance to terminal drought in a peanut may be improved simultaneously through selection in a breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcázar, R., Marco, F., Cuevas, J. C., Patron, M., Ferrando, A., Carrasco, P., et al. (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnology Letters, 28(23), 1867–1876.

    Article  CAS  PubMed  Google Scholar 

  • Ali-Ahmad, M., & Basha, S. M. (1998). Effect of water stress on composition of peanut leaves. Peanut Science, 25(1), 31–34.

    Article  CAS  Google Scholar 

  • Aninbon, C., Jogloy, S., Vorasoot, N., Nuchadomrong, S., Senawong, T., Holbrook, C. C., et al. (2016a). Effect of mid season drought on phenolic compounds in peanut genotypes with different levels of resistance to drought. Field Crops Research, 187, 127–134.

    Article  Google Scholar 

  • Aninbon, C., Jogloy, S., Vorasoot, N., Patanothai, A., Nuchadomrong, S., & Senawong, T. (2016b). Effect of end of season water deficit on phenolic compounds in peanut genotypes with different levels of resistance to drought. Food Chemistry, 196, 123–129.

    Article  CAS  PubMed  Google Scholar 

  • Barnett, N. M., & Naylor, A. W. (1966). Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiology, 41(7), 1222–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basha, S. M., Cherry, J. P., & Young, C. T. (1976). Change in free amino acids, carbohydrates, and protein of maturing seeds from various peanut (Arachis hypogaea L.) cultivars. Cereal Chemistry, 53, 586–597.

    CAS  Google Scholar 

  • Boggess, S. F. (1976). Contribution of arginine to proline accumulation in water stress barley leaves. Plant Physiology, 58(6), 796–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boote, K. J. (1982). Growth stages of peanut (Arachis hypogaea L.). Peanut Science, 9(1), 35–40.

    Article  Google Scholar 

  • Choudhary, N. L., Sairam, R. K., & Tyagi, A. (2005). Expression of Δ1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian Journal of Biochemistry & Biophysics, 42(6), 366–370.

    CAS  Google Scholar 

  • Doorenbos, J., & Pruitt, W. O. (1992). Calculation of crop water requirement. In J. Doorenbos & W. O. Pruitt (Eds.), Crop water requirement (pp. 1–65). Rome: FAO of the United Nation

    Google Scholar 

  • Girdthai, T., Jogloy, S., Vorasoot, N., Akkasaeng, C., Wongkaew, S., Holbrook, C. C., et al. (2010). Associations between physiological traits for drought tolerance and aflatoxin contamination in peanut genotypes under terminal drought. Plant Breeding, 129(6), 693–699.

    Article  CAS  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: Wiley.

    Google Scholar 

  • Gonzalez, L., & Gonzalez-Vilar, M. (2001). Determination of relative water content. In M. J. Reigosa Roger (Ed.), Handbook of plant ecophysiology techniques (pp. 207–212). Dordrecht: Springer. ISBN 978-0-7923-7053-6.

    Google Scholar 

  • Good, A. G., & Zaplachinski, S. T. (1994). The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiologia Plantarum, 90(1), 9–14.

    Article  CAS  Google Scholar 

  • Hanson, A. D., & Hitz, W. D. (1982). Metabolic responses of mesophytes to plant water deficit. Annual Review of Plant Physiology, 33, 163–303.

    Article  CAS  Google Scholar 

  • Hashim, I. B., Koehlerv, P. E., Eitenmiller, R. R., & Kvien, C. K. (1993). Fatty acid composition and tocopherol content of drought stressed Florunner Peanuts. Peanut Science, 20(1), 21–24.

    Article  CAS  Google Scholar 

  • Hoffmann, C. M. (2010). Sucrose accumulation in sugar beet under drought stress. Journal of Agronomy and Crop Science, 196(4), 243–252.

    CAS  Google Scholar 

  • Jharna, D. E., Chowdhury, B. L. D., Rana, M. A. M., & Sharmin, S. (2013). Selection of drought tolerant groundnut genotypes (Arachis hypogaea L.) based on total sugar and free amino acid content. Journal of Environmental Science and Natural Resources, 6(2), 1–5.

    Article  Google Scholar 

  • Koolachart, R., Jogloy, S., Vorasoot, N., Wongkaew, S., Holbrook, C. C., Jongrungklang, N., et al. (2013). Rooting traits of peanut genotypes with different yield responses to terminal drought. Field Crops Research, 149, 366–378.

    Article  Google Scholar 

  • Minocha, R., Majumdar, R., & Minocha, S. C. (2014). Polyamines and abiotic stress in plants: A complex relationship. Frontiers in Plant Science, 175(5), 1–17.

    Google Scholar 

  • Moral, L. F., Rharrabti, Y., Martos, V., & Royo, C. (2007). Environmentally induced changes in amino acid composition in the grain of durum wheat grown under different water and temperature regimes in a Mediterranean environment. Journal of Agricultural and Food Chemistry, 55(20), 8144–8151.

    Article  CAS  PubMed  Google Scholar 

  • Ros, E. (2010). Health Benefits of Nut Consumption. Nutrients, 2(7), 652–682.

    CAS  PubMed  Google Scholar 

  • Showler, A. T. (2002). Effects of water deficit stress, shade, weed competition, and kaolin particle film on selected foliar free amino acid accumulation in cotton, Gossypium hirsutum (L.). Journal of Chemical Ecology, 28(3), 631–651.

    Article  CAS  PubMed  Google Scholar 

  • Singh, S., & Russel, M.B. (1981). Water use by maize/pigeonpea intercrop on a deep Vertisol. In: Proceedings of international workshop on pigeonpeas, 15–19 December 1980 (vol. 1, pp. 271–282). ICRISAT Center Patancheru, India.

  • Solanki, J. K., & Sarangi, S. K. (2014). Effect of drought stress on proline accumulation in peanut genotypes. International Journal of Advanced Research, 2(10), 301–309.

    Google Scholar 

  • Songsri, P., Jogloy, S., Kesmala, T., Vorasoot, N., Akkasaeng, C., Patanothai, A., et al. (2008). Response of reproductive characters of drought resistant peanut genotypes to drought. Asian Journal of Plant Science, 7(5), 427–439.

    Article  Google Scholar 

  • Statistix 8. (2003). Statistix8: analytical software user’s manual. Tallahassee, FL.

  • Venkatachalam, M., & Sathe, S. K. (2006). Chemical composition of selected edible nut seeds. Journal of Agricultural and Food Chemistry, 54(13), 4705–4714.

    Article  CAS  PubMed  Google Scholar 

  • Win, M. M., Abdul-Hamid, A., Bahlishah, B. S., Anwar, F., Sabu, M. C., & Pak-Dek, M. (2011). Phenolic compound and antioxidant activity of peanut skin, hull, raw kernel and roasted kernel flour. Pakistan Journal of Botany, 43(3), 1635–1642.

    CAS  Google Scholar 

  • Yang, C. W., Lin, C. C., & Kao, C. H. (2000). Proline, ornithine, arginine and glutamic acid contents in detached rice leaves. Biologia Plantarum, 43(2), 305–307.

    Article  CAS  Google Scholar 

  • Young, C. T., & Mason, M. E. (2006). Free arginine content of peanuts (Arachis hypogaea L.) as a measure of seed maturity. Journal of Food Science, 37(5), 722–725.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the joint financial support of the Royal Golden Jubilee Ph.D. program and Khon Kaen University, the Peanut and Jerusalem Artichoke Improvement for Functional Food Research Group, Khon Kaen University and the Thailand Research Fund (TRF) for providing financial supports to this research through the Senior Research Scholar Project of Professor Dr. Sanun Jogloy (Project no. RTA 6180002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanun Jogloy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aninbon, C., Jogloy, S., Vorasoot, N. et al. Effect of Terminal Drought on Arginine Content in Peanut Genotypes with Difference in Levels of Drought Resistance. Int. J. Plant Prod. 13, 155–162 (2019). https://doi.org/10.1007/s42106-019-00043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-019-00043-x

Keywords

Navigation