Skip to main content
Log in

A Coupled Peridynamic and Finite Element Approach in ANSYS Framework for Fatigue Life Prediction Based on the Kinetic Theory of Fracture

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

This study presents a coupled peridynamics (PD) and finite element (FE) approach to simulate the process of failure due to cyclic loading based on the kinetic theory of fracture (KTF). It specifically leads to the prediction of number of load cycles to crack initiation and its propagation path. The PD representation of the equilibrium equations and the stress–strain relations are derived based on the PD least square minimization (PD LSM) method. The PD governing equations are constructed by using MATRIX27 element in the ANSYS framework and solved by employing an implicit method. The PD interactions are considered in the region of potential failure sites; otherwise, traditional finite elements are employed in the discretization of the domain. The coupling between the MATRIX27 elements and traditional finite elements are achieved through the coupled degrees of freedom (DOF) command available in the ANSYS framework. The verification of the coupled PD-FE approach is demonstrated by comparison against the FE prediction of displacement fields in a plate with and without a hole under tension. Its validity for predicting crack growth is established by simulating compact tension experiments under cyclic loading. The predictions capture the number of cycles to failure as well as the crack propagation paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Fluids Eng Trans ASME 85:528–533

    Google Scholar 

  2. Miner MA (1945) Cumulative fatigue damage J Appl Mech 12:159–164

    Google Scholar 

  3. Santecchia E, Hamouda AM, Musharavati F, Zalnezhad E, Cabibbo M, El Mehtedi M, Spigarelli S (2016) A review on fatigue life prediction methods for metals. Adv Mater Sci Eng :9573524

  4. Dougherty JD, Srivatsan TS, Padovan J (1997) Fatigue crack propagation and closure behavior of modified 1070 steel: finite element study. Eng Fract Mech 56:189–212

    Google Scholar 

  5. Kikuchi M, Wada Y, Shintaku Y, Suga K, Li YL (2014) Fatigue crack growth simulation in heterogeneous material using s-version FEM. Int J Fatigue 58:47–55

    Google Scholar 

  6. Branco R, Antunes FV, Costa JD (2015) A review on 3D-FE adaptive remeshing techniques for crack growth modelling. Eng Fract Mech 141:170–195

    Google Scholar 

  7. Yang B, Mall S, Ravi-Chandar K (2001) A cohesive zone model for fatigue crack growth in quasibrittle materials. Int J Solids Struct 38:3927–3944

    MATH  Google Scholar 

  8. Giner E, Navarro C, Sabsabi M, Tur M, Dominguez J, Fuenmayor FJ (2011) Fretting fatigue life prediction using the extended finite element method. Int J Mech Sci 53:217–225

    Google Scholar 

  9. Singh IV, Mishra BK, Bhattacharya S, Patil RU (2012) The numerical simulation of fatigue crack growth using extended finite element method. Int J Fatigue 36:109–119

    Google Scholar 

  10. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48:175–209

    MathSciNet  MATH  Google Scholar 

  11. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83:1526–1535

    Article  Google Scholar 

  12. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 83:151–184

    MathSciNet  MATH  Google Scholar 

  13. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162:229–244

    MATH  Google Scholar 

  14. Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J of Fract 171:65–78

    MATH  Google Scholar 

  15. Agwai A, Guven I, Madenci E (2011) Crack propagation in multilayer thin-film structures of electronic packages using peridynamic theory. Microelectron Reliab 51:2298–2305

    Google Scholar 

  16. Cheng ZQ, Liu YK, Zhao J, Feng H, Wu YZ (2018) Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Eng Fract Mech 191:13–32

    Google Scholar 

  17. Zhang YN, Deng HW, Deng JR, Liu CJ, Ke B (2019) Peridynamics simulation of crack propagation of ring-shaped specimen like rock under dynamic loading. Int J Rock Mechanics and Mining Sciences 123:104093

    Google Scholar 

  18. Hu YL, Madenci E (2016) Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos Struct 153:139–175

    Google Scholar 

  19. Jabakhanji R, Mohtar RH (2015) A peridynamic model of flow in porous media. Adv Water Resour 78:22–35

    Google Scholar 

  20. Oterkus S, Madenci E, Agwai A (2014) Peridynamic thermal diffusion. J Comput Phys 265:71–96

    MathSciNet  MATH  Google Scholar 

  21. Oterkus S, Madenci E, Agwai A (2014) Fully coupled peridynamic thermomechanics. J Mech Phys Solids 64:1–23

    MathSciNet  MATH  Google Scholar 

  22. Oterkus S, Madenci E (2017) Peridynamic modeling of fuel pellet cracking. Eng Fract Mech 176:23–37

    Google Scholar 

  23. Diyaroglu C, Oterkus S, Oterkus E, Madenci E, Han S, Hwang Y (2017) Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectronic Reliability 70:103–111

    Google Scholar 

  24. Wang YT, Zhou XP, Kou MM (2018) A coupled thermo-mechanical bond-based peridynamics for simulating thermal cracking in rocks. Int J Fract 211:13–42

    Google Scholar 

  25. Zhou XP, Wang YT, Shou YD (2020) Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks. Int J Rock Mechanics and Mining Sciences 132:104383

    Google Scholar 

  26. Oterkus E, Guven I, Madenci E (2010) Fatigue failure model with peridynamic theory. Proceedings of ITherm, Las Vegas, NV.

  27. Zaccariotto M, Luongo F, Sarego G, Dipasquale D (2013) Fatigue crack propagation with peridynamics: a sensitivity study of Paris law parameters. 4th CEAS Air and Space Conference, Innov Eur Sweden, Linkoping

  28. Bazazzadeh S, Zaccariotto M, Galvanetto U (2019) Fatigue degradation strategies to simulate crack propagation using peridynamic based computational methods. Lat Am J Solids Struct 16:1–31

    Google Scholar 

  29. Silling S, Askari A (2014) Peridynamic model for fatigue cracks, SAND2014-18590. Sandia National Laboratories, Albuquerque

    Google Scholar 

  30. Jung J, Seok J (2017) Mixed-mode fatigue crack growth analysis using peridynamic approach. Int J Fatigue 103:591–603

    Google Scholar 

  31. Jung J, Seok J (2016) Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach. Compos Struct 152:403–407

    Google Scholar 

  32. Zhang GF, Le Q, Loghin A, Subramaniyan A, Bobaru F (2016) Validation of a peridynamic model for fatigue cracking. Eng Fract Mech 162:76–94

    Google Scholar 

  33. Nguyen, CT, Oterkus, S, Oterkus, E (2020) An energy-based peridynamic model for fatigue cracking. Eng Fract Mech 107373.

  34. Hu YL, Madenci E (2017) Peridynamics for fatigue life and residual strength prediction of composite laminates. Compos Struct 160:169–184

    Google Scholar 

  35. Baber F, Guven I (2017) Solder joint fatigue life prediction using peridynamic approach. Microelectron Reliability 79:20–31

    Google Scholar 

  36. Madenci E, Diyaroglu C, Zhang YN, Baber F, Guven I (2020) Combined peridynamic theory and kinetic theory of fracture for solder joint fatigue life prediction. IEEE 70th Electronic Components & Technology Conference, Lake Buena Vista, FL.:236–248.

  37. Madenci E, Barut A, Yaghoobi A, Phan N, Fertig RS (2020) Combined peridynamics and kinetic theory of fracture for fatigue failure of composites under constant and variable amplitude loading. Theoret Appl Fract Mech 110:102824

    Google Scholar 

  38. Madenci E, Dorduncu M, Gu X (2019) Peridynamic least squares minimization. Comput Methods Appl Mech Eng 348:846–874

    MathSciNet  MATH  Google Scholar 

  39. Hansen AC, Baker-Jarvis J (1990) A rate dependent kinetic theory of fracture for polymers. Int J Fract 44:221–231

    Google Scholar 

  40. Fertig RS, Kenik DJ (2011) Predicting composite fatigue life using constituent-level physics. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, AIAA-2011–1991.

  41. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  42. Sajith S, Murthy KSRK, Robi PS (2020) Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061–T6. Int J Fract 130:105285

    Google Scholar 

  43. Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New York

    MATH  Google Scholar 

  44. Madenci E (2017) Peridynamic integrals for strain invariants of homogeneous deformation. Z Angew Math Mech 97:1236–1251

    MathSciNet  Google Scholar 

  45. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput Methods Appl Mech Eng 304:408–451

    MathSciNet  MATH  Google Scholar 

  46. Madenci E, Barut A, Dorduncu M (2019) Peridynamic differential operators for numerical analysis. Springer, Boston, MA

    MATH  Google Scholar 

  47. Madenci E, Dorduncu M, Barut A, Phan N (2018) A state-based peridynamic analysis in a finite element framework. Eng Fract Mech 195:104–128

    Google Scholar 

  48. Macek RW, Silling SA (2007) Peridynamics via finite elements. Finite Elem Anal Des 43:1169–1178

    MathSciNet  Google Scholar 

  49. Diyaroglu C, Madenci E, Phan N (2019) Peridynamic homogenization of microstructures with orthotropic constituents in a finite element framework. Compos Struct 227:111334

    Google Scholar 

  50. Coleman BD (1956) Time dependence of mechanical breakdown phenomena. J Appl Phys 27:862–866

    Google Scholar 

  51. Zhurkov SN (1984) Kinetic concept of the strength of solids. Int J Fract 26:295–307

    Google Scholar 

  52. Bhuiyan FH, Fertig RS (2017) A physics-based combined creep and fatigue methodology for fiber-reinforced polymer composites. 58th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, AIAA 2017–0201

  53. Bhuiyan FH, Fertig RS (2018) Predicting matrix and delamination fatigue in fiber-reinforced polymer composites using kinetic theory of fracture. Int J Fatigue 117:327–339

    Google Scholar 

  54. Mitts C, Naboulsi S, Przybyla C, Madenci E (2020) Axisymmetric peridynamic analysis of crack deflection in a single strand ceramic matrix composite. Eng Fract Mech 235:107074

    Google Scholar 

  55. Yahr GT (1997) Fatigue design curves for 6061–T6 aluminum. J Pressure Vessel Technol 119:211–215

    Google Scholar 

Download references

Funding

This study was performed as part of the ongoing research at the MURI Center for Material Failure Prediction through Peridynamics at the University of Arizona (AFOSR Grant No. FA9550-14-1-0073). Financial support is provided by the China Scholarship Council for Yanan Zhang to study at the University of Arizona (No. 201906370132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdogan Madenci.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Appendix

Appendix

Based on the PD LSM introduced by Madenci et al. [38], the first and second order derivatives of the function, \(f\left(\mathrm{x}\right)\) with \({\mathrm{x}}^{T}=\left\{{x}_{1},{x}_{2}\right\}\) can be obtained by solving for the unknown vectors, \({\mathbf{D}}_{1}\left(f\left(\mathrm{x}\right)\right)\) and \({\mathbf{D}}_{2}\left(f\left(\mathrm{x}\right)\right)\) in the system of equations of the form

$$\mathbf{A}\mathbf{D}=\mathbf{R}$$
(58)

with

$$\mathbf{A}=\left[\begin{array}{c}{\mathbf{A}}_{11} {\mathbf{A}}_{12}\\ {\mathbf{A}}_{21} {\mathbf{A}}_{22}\end{array}\right];\mathbf{D}=\left\{\begin{array}{c}{\mathbf{D}}_{1}\left({{f}}\left({\varvec{x}}\right)\right)\\ {\mathbf{D}}_{2}\left({{f}}\left({\varvec{x}}\right)\right)\end{array}\right\};\mathbf{R}=\left\{\begin{array}{c}{\mathbf{R}}_{1}\\ {\mathbf{R}}_{2}\end{array}\right\}$$
(59)

in which the unknown vectors are defined as

$${\mathbf{D}}_{1}={\left\{{{{D}}}_{1} {{{D}}}_{2}\right\}}^{{{T}}}$$
(60)
$${\mathbf{D}}_{2}={\left\{{{{{D}}}_{1}^{2} {{{D}}}_{2}^{2} {{D}}}_{1} {{{D}}}_{2}\right\}}^{{{T}}}$$
(61)

with

$${{{D}}}_{{{i}}}^{{{n}}}=\frac{{\partial }^{{{n}}}}{{\partial {{x}}}_{{{i}}}^{{{n}}}}$$
(62)

In reference to Fig. 4, the discrete form of the known vectors, \({\mathbf{R}}_{1}\) and \({\mathbf{R}}_{2}\) can be expressed as

$$\mathbf{R}_1 (\mathbf{x}_{k}) = \sum^{N_{(k)}}_{j=1}w_{(k)(j)} \left\{\begin{array}{c}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}\\ {{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\end{array}\right\} (f \; (\mathrm {x}_{(k)}) - f \; (\mathrm{x}_k)) \; V_{j}$$
(63)

and

$$\mathrm{R}_2 (\mathrm{x}_k)= \sum^{N_k}_{j=1} w_{(k)(j)}\left\{ \begin{array} {c}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}\\ {{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ \end{array}\right\} (f \; (\mathrm{x}_{(j)}) - f \; (\mathrm{x}_{(k)})) \; V_{(j)}$$
(64)

The weight function can be specified as \({w}_{\left(k\right)\left(j\right)}={e}^{-{\left(2{\xi }_{\left(k\right)\left(j\right)}/\delta \right)}^{2}}\). The known submatrices can be expressed as

$${\mathbf{A}}_{11}\left({\mathbf{x}}_{\left({{k}}\right)}\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}\left[\begin{array}{c}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)} {{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}\end{array}\right]\\$$
(65)
$${\mathbf{A}}_{12}\left({\mathbf{x}}_{\left({{k}}\right)}\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}\left[\begin{array}{c}\frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{3}}{2} \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}}{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}}{2} \frac{{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{3}}{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}\end{array}\right]{{{V}}}_{\left({{j}}\right)}$$
(66)
$${\mathbf{A}}_{21}\left({\mathbf{x}}_{\left({{k}}\right)}\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}\left[\begin{array}{c}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{3} {{{\xi}}}_{1\left(k\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2} {{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{3}\\ {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}\end{array}\right]{{{V}}}_{\left({{j}}\right)}$$
(67)
$${\mathbf{A}}_{22}\left({\mathbf{x}}_{\left({{k}}\right)}\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}\left[\begin{array}{c}\frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{4}}{2} \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}}{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{3}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}}{2} \frac{{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{4}}{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{3}\\ \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{3}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}}{2} \frac{{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{3}}{2} {{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}\end{array}\right]{{{V}}}_{\left({{j}}\right)}$$
(68)

The solution to the system of equations leads to

$${\mathbf{D}}_{1}\left({{f}}\left({\mathbf{x}}_{\left({{k}}\right)}\right)\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}{\mathbf{g}}_{1}\left({{{\xi}}}_{\left({{k}}\right)\left({{j}}\right)}\right)\left({{f}}\left({\mathbf{x}}_{\left({{j}}\right)}\right)-{{f}}\left({\mathbf{x}}_{\left({{k}}\right)}\right)\right){{{V}}}_{\left({{j}}\right)}$$
(69)

and

$${\mathbf{D}}_{2}\left({{f}}\left({\mathbf{x}}_{\left({{k}}\right)}\right)\right)=\sum_{{{j}}=1}^{{{{N}}}_{{\left({{k}}\right)}}}{{{w}}}_{\left({{k}}\right)\left({{j}}\right)}{\mathbf{g}}_{2}\left({{{\xi}}}_{\left({{k}}\right)\left({{j}}\right)}\right)\left({{f}}\left({\mathbf{x}}_{\left({{j}}\right)}\right)-{{f}}\left({\mathbf{x}}_{\left({{k}}\right)}\right)\right){{{V}}}_{\left({{j}}\right)}$$
(70)

where

$${\mathbf{g}}_{1}\left({{{\xi}}}_{\left({{k}}\right)\left({{j}}\right)}\right)=\left\{\begin{array}{c}{{{a}}}_{11}^{11}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{12}^{11}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{11}^{12}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}+{{{a}}}_{12}^{12}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}{+{{a}}}_{13}^{12}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{a}}}_{21}^{11}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{22}^{11}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{21}^{12}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}+{{{a}}}_{22}^{12}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}{+{{a}}}_{23}^{12}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\end{array}\right\}$$
(71)

and

$${\mathbf{g}}_{2}\left({{{\xi}}}_{\left({{k}}\right)\left({{j}}\right)}\right)=\left\{\begin{array}{c}{{{a}}}_{11}^{21}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{12}^{21}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{11}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}+{{{a}}}_{12}^{22}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}{+{{a}}}_{13}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{a}}}_{21}^{21}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{22}^{21}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{21}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}+{{{a}}}_{22}^{22}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}{+{{a}}}_{23}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\\ {{{a}}}_{31}^{21}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{32}^{21}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}+{{{a}}}_{31}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}^{2}+{{{a}}}_{32}^{22}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}^{2}{+{{a}}}_{33}^{22}{{{\xi}}}_{1\left({{k}}\right)\left({{j}}\right)}{{{\xi}}}_{2\left({{k}}\right)\left({{j}}\right)}\end{array}\right\}$$
(72)

in which the coefficients are given by

$${\mathbf{A}}^{-1}=\left[\begin{array}{c}{{{a}}}_{11}^{11} {{{a}}}_{12}^{11} {{{a}}}_{11}^{12} {{{a}}}_{12}^{12} {{{a}}}_{13}^{12}\\ {{{a}}}_{21}^{11} {{{a}}}_{22}^{11} {{{a}}}_{21}^{12} {{{a}}}_{22}^{12} {{{a}}}_{23}^{12}\\ {{{a}}}_{11}^{21} {{{a}}}_{12}^{21} {{{a}}}_{11}^{22} {{{a}}}_{12}^{22} {{{a}}}_{13}^{22}\\ {{{a}}}_{21}^{21} {{{a}}}_{22}^{21} {{{a}}}_{21}^{22} {{{a}}}_{22}^{22} {{{a}}}_{23}^{22}\\ {{{a}}}_{31}^{21} {{{a}}}_{32}^{21} {{{a}}}_{31}^{22} {{{a}}}_{32}^{22} {{{a}}}_{33}^{22}\end{array}\right]$$
(73)

The matrix, \(\mathbf{G}\left(\boldsymbol\xi \right)\) for 2D analysis is defined in terms of the components of the vector, \({\mathbf{g}}_{2}\left(\boldsymbol\xi \right)\) as

$$\mathbf{G}\left({\boldsymbol{\xi}}\right)=\left[\begin{array}{cc}{\mathbf{g}}_{2\left(1\right)}& {\mathbf{g}}_{2\left(3\right)}\\ {\mathbf{g}}_{2\left(3\right)}& {\mathbf{g}}_{2\left(2\right)}\end{array}\right]$$
(74)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Madenci, E. A Coupled Peridynamic and Finite Element Approach in ANSYS Framework for Fatigue Life Prediction Based on the Kinetic Theory of Fracture. J Peridyn Nonlocal Model 4, 51–87 (2022). https://doi.org/10.1007/s42102-021-00055-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-021-00055-0

Keywords

Navigation