Skip to main content

Advertisement

Log in

Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine

  • Communications
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

An efficient procedure of continuous-flow microwave reactor, for oxidative bromination with HBr (hydrogen bromide) -DMSO (dimethyl sulphoxide) in large scale is described herein. The reaction is carried out in a metal-free manner, with the use of water as solvent under microwave irradiation conditions. The productivity of this continuous step attains 60 g/min under the optimal conditions, implying a theoretical productivity of 8.6 kg/day. The reaction mixture is screened by thermal insulation accelerometer to ensure the safe process of this reaction in these conditions. 4-Bromo-3-methylanisole is further reacted with formanilide in the presence of cuprous iodide (CuI) and potassium carbonate (K2CO3) to give 4-methoxy-2-methyldiphenylamine, a common intermediate in fine chemical industry such as dye and paper chemistry, in an isolated yield of 65.2%. with more than 200 g scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

References

  1. Gribble GW (2004) Natural Organohalogens: a new frontier for medicinal agents? J Chem Educ 81(10):1441

    Article  CAS  Google Scholar 

  2. Percec V, Bae J-Y, Hill DH (1995) Aryl Mesylates in metal catalyzed homo- and cross-coupling reactions. 4. Scope and limitations of aryl Mesylates in nickel catalyzed cross-coupling reactions. J Organomet Chem 60(21):6895–6903

    Article  CAS  Google Scholar 

  3. Beletskaya IP, Cheprakov AV (2004) Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord Chem Rev 248(21):2337–2364

    Article  CAS  Google Scholar 

  4. Ruiz-Castillo P, Buchwald SL (2016) Applications of palladium-catalyzed C–N cross-coupling reactions. Chem Rev 116(19):12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rothenberg G, Clark JH (2000) Vanadium-catalysed oxidative Bromination using dilute mineral acids and hydrogen peroxide: an option for recycling waste acid streams. Org Process Res Dev 4(4):270–274

    Article  CAS  Google Scholar 

  6. Barton B, Hlohloza NS, McInnes SM, Zeelie B (2003) Catalysts and process for the production of benzyl Toluenes. Org Process Res Dev 7(4):571–576

    Article  CAS  Google Scholar 

  7. Podgoršek A, Zupan M, Iskra J (2009) Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxide. Angew Chem Int Ed 48(45):8424–8450

    Article  CAS  Google Scholar 

  8. Martins NS, Alberto EE (2018) Dibromination of alkenes with LiBr and H2O2 under mild conditions. New J Chem 42(1):161–167

    Article  CAS  Google Scholar 

  9. Kajorinne JK, Steers JCM, Merchant ME, MacKinnon CD (2018) Green halogenation reactions for (hetero)aromatic ring systems in alcohol, water, or no solvent. Can J Chem 96(12):1087–1091

    Article  CAS  Google Scholar 

  10. Sdahl M, Conrad J, Braunberger C, Beifuss U (2019) Efficient and sustainable laccase-catalyzed iodination of p-substituted phenols using KI as iodine source and aerial O2 as oxidant. RSC Adv 9(34):19549–19559

    Article  CAS  Google Scholar 

  11. Sorabad GS, Maddani MR (2019) Metal-free, green and efficient oxidative α halogenation of enaminones by halo acid and DMSO. New J Chem 43(17):6563–6568

    Article  CAS  Google Scholar 

  12. Choudhury LH, Parvin T, Khan AT (2009) Recent advances in the application of bromodimethylsulfonium bromide (BDMS) in organic synthesis. Tetrahedron 65(46):9513–9526

    Article  CAS  Google Scholar 

  13. Song S, Sun X, Li X, Yuan Y, Jiao N (2015) Efficient and practical oxidative Bromination and iodination of Arenes and Heteroarenes with DMSO and hydrogen halide: a mild protocol for late-stage functionalization. Org Lett 17(12):2886–2889

    Article  CAS  PubMed  Google Scholar 

  14. Majetich G, Hicks R, Reister S (1997) Electrophilic aromatic Bromination using Bromodimethylsulfonium bromide generated in situ. J Organomet Chem 62(13):4321–4326

    Article  CAS  Google Scholar 

  15. Kappe CO (2002) High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6(3):314–320

    Article  CAS  PubMed  Google Scholar 

  16. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43(46):6250–6284

    Article  CAS  Google Scholar 

  17. Kremsner JM, Stadler A, Kappe CO (2006) The scale-up of microwave-assisted organic synthesis. In: Larhed M, Olofssonq K (eds) Microwave methods in organic synthesis. Springer, Berlin, pp 233–278

    Chapter  Google Scholar 

  18. Reid MC, Clark JH, Macquarrie DJ (2006) Solventless microwave-assisted chlorodehydroxylation for the conversion of alcohols to alkyl chlorides. Green Chem 8(5):437–438

    Article  CAS  Google Scholar 

  19. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52(4):1088–1094

    Article  CAS  Google Scholar 

  20. Dallinger D, Lehmann H, Moseley JD, Stadler A, Kappe CO (2011) Scale-up of microwave-assisted reactions in a multimode bench-top reactor. Org Process Res Dev 15(4):841–854

    Article  CAS  Google Scholar 

  21. Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Comm 28(4):395–410

    Article  CAS  Google Scholar 

  22. Wiles C, Watts P (2011) Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated SNAr reaction. Beilstein J Org Chem 7:1360–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Öhrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012) Evaluation of a nonresonant microwave applicator for continuous-flow chemistry applications. Org Process Res Dev 16(5):1053–1063

    Article  CAS  Google Scholar 

  24. Yokozawa S, Ohneda N, Muramatsu K, Okamoto T, Odajima H, Ikawa T, Sugiyama J-i, Fujita M, Sawairi T, Egami H, Hamashima Y, Egi M, Akai S (2015) Development of a highly efficient single-mode microwave applicator with a resonant cavity and its application to continuous flow syntheses. RSC Adv 5(14):10204–10210

    Article  CAS  Google Scholar 

  25. Skillinghaug B, Rydfjord J, Sävmarker J, Larhed M (2016) Microwave heated continuous flow palladium(II)-catalyzed Desulfitative synthesis of aryl ketones. Org Process Res Dev 20(11):2005–2011

    Article  CAS  Google Scholar 

  26. Skillinghaug B, Rydfjord J, Sävmarker J, Larhed M (2016) Microwave heated continuous flow palladium(II)-catalyzed Desulfitative synthesis of aryl ketones. Org Process Res Dev 20(11):2005–2011

    Article  CAS  Google Scholar 

  27. Vámosi P, Matsuo K, Masuda T, Sato K, Narumi T, Takeda K, Mase N (2019) Rapid optimization of reaction conditions based on comprehensive reaction analysis using a continuous flow microwave reactor. Chem Rec 19(1):77–84

    Article  PubMed  CAS  Google Scholar 

  28. Egami H, Tamaoki S, Abe M, Ohneda N, Yoshimura T, Okamoto T, Odajima H, Mase N, Takeda K, Hamashima Y (2018) Scalable microwave-assisted Johnson-Claisen rearrangement with a continuous flow microwave system. Org Process Res Dev 22(8):1029–1033

    Article  CAS  Google Scholar 

  29. Noshita M, Shimizu Y, Morimoto H, Akai S, Hamashima Y, Ohneda N, Odajima H, Ohshima T (2019) Ammonium salt-accelerated Hydrazinolysis of Unactivated amides: mechanistic investigation and application to a microwave flow process. Org Process Res Dev 23(4):588–594

    Article  CAS  Google Scholar 

  30. Moseley JD, Woodman EK (2008) Scaling-out pharmaceutical reactions in an automated stop-flow microwave reactor. Org Process Res Dev 12(5):967–981

    Article  CAS  Google Scholar 

  31. Konda V, Rydfjord J, Sävmarker J, Larhed M (2014) Safe palladium-catalyzed cross-couplings with microwave heating using continuous-flow silicon carbide reactors. Org Process Res Dev 18(11):1413–1418

    Article  CAS  Google Scholar 

  32. Oehrngren P, Fardost A, Russo F, Schanche J-S, Fagrell M, Larhed M (2012) Evaluation of a nonresonant microwave applicator for continuous-flow chemistry applications. Org Process Res Dev 16(5):1053–1063

    Article  CAS  Google Scholar 

  33. Moseley JD, Woodman EK (2009) Energy efficiency of microwave- and conventionally heated reactors compared at meso scale for organic reactions. Energ Fuels 23(11):5438–5447

    Article  CAS  Google Scholar 

  34. Bálint E, Tajti Á, Keglevich G (2012) Application of the microwave technique in continuous flow processing of Organophosphorus chemical reactions. Materials2019,12 (5), 788. As a comparison: c) Yu, Z.; Lv, Y.; Yu, C., a continuous kilogram-scale process for the manufacture of o-Difluorobenzene. Org Process Res Dev 16(10):1669–1672

  35. Yu, Z.-q.; Lv, Y.-w.; Yu, C.-m.; Su, W.-k., Continuous flow reactor for Balz–Schiemann reaction: a new procedure for the preparation of aromatic fluorides. Tetrahedron Lett 2013, 54 (10), 1261–1263

  36. Yu Z, Lv Y, Yu C, Su W (2013) A high-output, continuous selective and heterogeneous nitration of p-Difluorobenzene. Org Process Res Dev 17(3):438–442

    Article  CAS  Google Scholar 

  37. Yu Z, Tong G, Xie X, Zhou P, Lv Y, Su W (2015) Continuous-flow process for the synthesis of 2-Ethylphenylhydrazine hydrochloride. Org Process Res Dev 19(7):892–896

    Article  CAS  Google Scholar 

  38. Xu, J.; Yu, J.; Jin, Y.; Li, J.; Yu, Z.; Lv, Y., A continuous flow microwave-assisted fischer indole synthesis of 7-Ethyltryptophol. Chem. Eng. Process.2017,121, 144-148. For a comparison: b) Yu, J.; Xu, J.; Yu, Z.; Jin, Y.; Li, J.; Lv, Y., a continuous-flow fischer indole synthesis of 3-methylindole in an ionic liquid. J. Flow Chem 2017, 7 (2), 33–36

  39. Xu J, Jin Y, Li J, Zhang P, Yu J, Lv Y (2018) A solvent-involved synthesis of etherified Tryptophol derivatives: Indolization and condensation in a single-stage flow. Curr Org Chem 22(14):1468–1473

    Google Scholar 

  40. Yu J, Xu J, Li J, Jin Y, Xu W, Yu Z, Lv Y (2018) A continuous-flow procedure for the synthesis of 4-Benzylidene-pyrazol-5-one derivatives. J Flow Chem 8(1):29–34

    Article  CAS  Google Scholar 

  41. Glotz G, Lebl R, Dallinger D, Kappe CO (2017) Integration of bromine and cyanogen bromide generators for the continuous-flow synthesis of cyclic Guanidines. Angew Chem Int Ed 56(44):13786–13789

    Article  CAS  Google Scholar 

  42. Steiner A, Williams JD, de Frutos O, Rincón JA, Mateos C, Kappe CO (2020) Continuous photochemical benzylic bromination using in situ generated Br2: process intensification towards optimal PMI and throughput. Green Chem 22(2):448–454

    Article  CAS  Google Scholar 

  43. Van Kerrebroeck R, Naert P, Heugebaert SAT, D’hooghe M, Stevens VC (2019) Electrophilic Bromination in flow: a safe and sustainable alternative to the use of molecular bromine in batch. Molecules 24(11):2116

    Article  PubMed Central  CAS  Google Scholar 

  44. Cantillo D, Kappe CO (2017) Halogenation of organic compounds using continuous flow and microreactor technology. React Chem Eng 2(1):7–19

    Article  CAS  Google Scholar 

  45. Nodiff EA, Hausman M (1964) A new phenothiazine synthesis. The halogen-induced smiles Rearrangement1. J Organomet Chem 29(8):2453–2455

    Article  CAS  Google Scholar 

  46. Grotta HM, Page Jr TF, Riggle CJ, Manian AA (1967) Some hydroxylated derivatives of chlorpromazine. J Heterocyclic Chem 4(4):611–618

    Article  CAS  Google Scholar 

  47. F. Brunner, Process for the preparation of diphenylamines. European patent 1996, EP0727411A2

  48. Li Y, Li J, Qi Z, Yuan Y, Li M, Wang D (2012) Synthesis of 4-Methox y-2-methyldiphenylamine. China Chemical Trade 5:31–32

    Google Scholar 

  49. Scholz U, Schlummer B (2005) Synthesis of 2-methyl-4-methoxydiphenylamine by palladium catalyzed C-N coupling-high synthetic versatility by use of a flexible catalytic system. Tetrahedron 61(26):6379–6385

    Article  CAS  Google Scholar 

  50. Bou-Diab L, Fierz H, Gwerder C, Suter G (2003) A new multipurpose microreactor for process safety studies. Org Process Res Dev 7(6):1077–1078

    Article  CAS  Google Scholar 

  51. Reeves JT, Sarvestani M, Song JJ, Tan Z, Nummy LJ, Lee H, Yee NK, Senanayake CH (2006) Process safety evaluation of a magnesium−iodine exchange reaction. Org Process Res Dev 10(6):1258–1262

    Article  CAS  Google Scholar 

  52. Bollyn M (2006) DMSO can be more than a solvent: thermal analysis of its chemical interactions with certain Chemicals at Different Process Stages. Org Process Res Dev 10(6):1299–1312

    Article  CAS  Google Scholar 

  53. Wang Z, Richter SM, Gates BD, Grieme TA (2012) Safety concerns in a pharmaceutical manufacturing process using dimethyl Sulfoxide (DMSO) as a solvent. Org Process Res Dev 16(12):1994–2000

    Article  CAS  Google Scholar 

  54. Veedhi S, Babu SR (2013) Process safety evaluation to identify the inherent hazards of a highly exothermic Ritter reaction using adiabatic and isothermal calorimeters. Org Process Res Dev 17(12):1597–1602

    Article  CAS  Google Scholar 

  55. Bassan E, Ruck RT, Dienemann E, Emerson KM, Humphrey GR, Raheem IT, Tschaen DM, Vickery TP, Wood HB, Yasuda N (2013) Merck’s reaction review policy: an exercise in process safety. Org Process Res Dev 17(12):1611–1616

    Article  CAS  Google Scholar 

  56. Wang Z, Richter SM, Bellettini JR, Pu Y-M, Hill DR (2014) Safe scale-up of pharmaceutical manufacturing processes with dimethyl Sulfoxide as the solvent and a reactant or a byproduct. Org Process Res Dev 18(12):1836–1842

    Article  CAS  Google Scholar 

  57. Jović F, Sučec A, Nekola I, Čavužić D, Marcelić E, Meštrović E (2015) Application of safety by design methodology in evaluating process safety for a duff reaction using predictive process simulators. Org Process Res Dev 19(9):1268–1273

    Article  CAS  Google Scholar 

  58. Monteiro AM, Flanagan RC (2017) Process safety considerations for the use of 1 M Borane Tetrahydrofuran complex under general purpose plant conditions. Org Process Res Dev 21(2):241–246

    Article  CAS  Google Scholar 

  59. Modrzyński JJ, Christensen JH, Brandt KK (2019) Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. Ecotoxicology 28(9):1136–1141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Zhejiang Provincial National Science (LQ18B020003), Zhejiang Qianjiang Talent Program and Basic Public Welfare Research Project of Zhejiang (LGG18B020003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwen Lv or Jiangang Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1.

NMR spectra of 4-methoxy-2-methyldiphenylamine and 4-methoxy-2-methyldiphenylamine, bromination reaction thermal insulation accelerometer test of increasing rate of temperature/temperature relationship and the data of batch synthesis of 4-bromo-3-methylanisole are included in the Supporting Information. (DOCX 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Yang, J., Feng, X. et al. Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. J Flow Chem 10, 369–376 (2020). https://doi.org/10.1007/s41981-020-00094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-020-00094-6

Keywords

Navigation