Skip to main content
Log in

Critical p(x)-Kirchhoff Problems Involving Variable Singular Exponent

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we investigate a class of critical p(x)-Kirchhoff problems with a singular term. A nontrivial positive solution is obtained by combining variational methods with an appropriate truncation argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data

No data is used in this work.

References

  1. Bonder, J.F., Silva, A.: Concentration-compactness principle for variable exponent spaces and applications. Electron. J. Differ. Equ. 141, 1–18 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Bonder, J.F., Saintier, N., Silva, A.: Existence of solution to a critical equation with variable exponent. Ann. Acad. Sci. Fenn. Math. 37, 579–594 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonder, J.F., Saintier, N., Silva, A.: The concentration-compactness principle for fractional order Sobolev spaces in unbounded-domains and applications to the generalized fractional Brezis-Nirenberg problem. Nonlinear Differ. Equ. Appl. (2018). https://doi.org/10.1007/s00030-018-0543-5

    Article  MATH  Google Scholar 

  4. Fu, Y., Zhang, X.: Multiple solutions for a class of \(p(x)\)-Laplacian equations in \({\mathbb{R}}^N\) involving the critical exponent. Proc. R. Soc. A 466, 1667–1686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liang, S., Zhang, J.: Multiple solutions for a noncooperative \(p(x)\)-Laplacian equations in \({\mathbb{R}}^N\) involving the critical exponent. J. Math. Anal. Appl. 403, 344–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mizuta, Y., Ohno, T., Shimomura, T., Shioji, N.: Compact embeddings for Sobolev exponents and existence of solutions for nonlinear elliptic problems involving the \(p(x)\)-Laplacian and its critical exponent. Ann. Acad. Sci. Fenn. Math. 35, 115–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, X., Fu, Y.: Solution of \(p(x)\)-Laplacian equations with critical exponent and perturbations in \({\mathbb{R}}^N\). Electron. J. Differ. Equ. Conf. 2012(120), 1–14 (2012)

    Google Scholar 

  8. Chung, N.T.: Infinitely many solutions for a class of \(p(x)\) Kirchhoff type problems with critical exponents. Ann. Polon. Math. 124, 129–149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tsouli, N., Haddaoui, M., Hssini, E.M.: Multiple solutions for a critical \(p(x)\)-Kirchhoff type equations. Bol. Soc. Paran. Mat. 38, 197–211 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, Y.: The principle of concentration compactness in spaces and its application. Nonlinear Anal. 71, 1876–1892 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, G., Hao, R.: Existence of solutions for a \(p(x)\)-Kirchhoff-type equation. Anal. Appl. 359, 275–284 (2009)

  12. Diening, L., Harjulehto, P., Hasto, P., Ruz̆ička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer-Verlag, Berlin (2011)

  13. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  14. Liang, S., Pucci, P., Zhang, B.: Multiple solutions for critical Choquard–Kirchhoff type equations. Adv. Nonlinear Anal. 10, 400–419 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fiscella, A., Pucci, P.: Degenerate Kirchhoff (p, q)-fractional systems with critical nonlinearities. Fract. Calc. Appl. Anal. 23, 723–752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Autuori, G., Pucci, P., Salvatori, M.C.: Asymptotic stability for anistropic Kirchhoff systems. J. Math. Anal. Appl. 352, 149–165 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, G., Hao, R.: Existence of solutions for a \(p(x)\)-Kirchhoff-type equation. Anal. Appl. 359, 275–284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duan, L., Huang, L., Cai, Z.: On existence of three solutions for \(p(x)\)-Kirchhoff type differential inclusion problem via nonsmooth critical point theory. Taiwan. J. Math. 19, 397–418 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Fan, X.: On nonlocal \(p(x)\)-Laplacian Dirichlet problems. Nonlinear Anal. 72, 3314–3323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, E., Zhao, P.: Existence and multiplicity of solutions of nonlocal \(p(x)\)-Laplacian problems in \({\mathbb{R}}^N\). Bound. Value Probl. (2012). https://doi.org/10.1186/1687-2770-2012-79

    Article  MATH  Google Scholar 

  21. Mokhtari, A., Moussaoui, T., O’Regan, D.: Existence and multiplicity of solutions for a \(p(x)\)-Kirchhoff type problem via variational techniques. Arch. Math. (Brno) 51, 163–173 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Boulaaras, S., Guefaifia, R., Cherif, B., Radwan, T.: Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods. AIMS Math. 6, 2315–2329 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, E., Zhao, P.: Existence and multiplicity of solutions of nonlocal \(p(x)\)-Laplacian problems in \({\mathbb{R}}^N\). Bound. Value Probl. (2012). https://doi.org/10.1186/1687-2770-2012-79

  25. Kirchhoff, G.: Mechanik. Teubner, Leipzig, Germany (1883)

  26. Kamache, F., Guefaifia, R., Boulaaras, S.: Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters. J. Pseudo-Differ. Oper. Appl. 11, 1781–1803 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Piskin, E., Boulaaras, S., Irkil, N.: Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity. Math. Methods Appl. Sci. 44, 4654–4672 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ben Ali, K., Ghanmi, A., Kefi, K.: Minimax method involving singular \(p(x)\)-Kirchhoff equation. J. Math. Phys. (2017). https://doi.org/10.1063/1.5010798

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, J.J.: Positive solutions of the p(x)-Laplace equation with singular nonlinearity. Nonlinear Anal. 72, 4428–4437 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, J., Zhang, Q., Zhao, C.: Existence of positive solutions for \(p(x)\)-Laplacian equations with a singular nonlinear term. Electron. J. Differ. Equ. Conf. 2014(155), 1–21 (2014)

    MATH  Google Scholar 

  31. Saoudi, K., Ghanmi, A.: A multiplicity results for a singular equation involving the \(p(x)\)-Laplace operator. Complex Var. Ellipt. Equ. (2016). https://doi.org/10.1080/17476933.2016.1238466

    Article  MATH  Google Scholar 

  32. Zhang, Q.: Existence and asymptotic behavior of positive solutions to \(p(x)\)-Laplacian equations with singular nonlinearities. J. Inequal. Appl. (2007). https://doi.org/10.1155/2007/19349

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohammed, A.: Positive solutions of the \(p\)-Laplace equation with singular nonlin-earity. J. Math. Anal. Appl. 352, 234–245 (2009)

    Article  MathSciNet  Google Scholar 

  34. Goncalves, J.V.A., Rezende, M.C., Santos, C.A.: Positive solutions for a mixed and singular quasilinear problem. Nonlinear Anal. 74, 132–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, J., Pucci, P., Wu, H., Zhang, Q.: Existence and blow-up rate of large solutions of \(p(x)\)-Laplacian equations with gradient terms. J. Math. Anal. Appl. 457, 944–977 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Debajyoti, C.: Existence and Holder regularity of infinitely many solutions to a \(p\)-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition. Z. Angew. Math. Phys. (2021). https://doi.org/10.1007/s00033-020-01464-9

    Article  MATH  Google Scholar 

  38. Colasuonno, F., Pucci, P.: Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rǎdulescu, V.D., Repovš, D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis. Chapman and Hall/CRC, New York (2015)

    Book  MATH  Google Scholar 

  40. Zhang, Q.: Existence and asymptotic behavior of positive solutions to \(p(x)\)-Laplacian equations with singular nonlinearities. J. Ineq. Appl (2007). https://doi.org/10.1155/2007/19349

  41. Kováčik, O., Rákosník, G.: On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\). Czech. Math. J. 41, 592–618 (1991)

    Article  MATH  Google Scholar 

  42. Musielak, J.: Orlicz Spaces and Modular Spaces. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  43. Fan, X., Zhao, D.: On the spaces \(L^{p(x)}\) and \(W^{m, p(x)}\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mokhtari, A., Saoudi, K., Chung, N.T.: A fractional \(p(x,\cdot )\)-Laplacian problem involving a singular term. Indian J. Pure Appl. Math. (2021). https://doi.org/10.1007/s13226-021-00037-4

    Article  MATH  Google Scholar 

  46. Fan, X., Zhang, Q.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fan, X., Zhao, Y.Z., Zhang, Q.H.: A strong maximum principle for \(p(x)\)-Laplace equations. Chin. J. Contemp. Math. 24(3), 277–282 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Fan, X.: On the sub-supersolution method for \(p(x)\)-Laplacian equations. J. Math. Anal. Appl. 330, 665–682 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ambrosetti, A.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  50. Duan, Y., Sun, X., Liao, J.F.: Multiplicity of positive solutions for a class of critical Sobolev exponent problems involving Kirchhoff-type nonlocal term. Comput. Math. Appl. 75(9), 3201–3212 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Key Research and Development Program of China (2018YFC1508100 and 2018YFC1508106).

Author information

Authors and Affiliations

Authors

Contributions

Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiabin Zuo.

Ethics declarations

Conflict of interest

This work does not have any conflicts of interest.

Additional information

Communicated by Majid Gazor.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, A., Saoudi, K. & Zuo, J. Critical p(x)-Kirchhoff Problems Involving Variable Singular Exponent. Bull. Iran. Math. Soc. 48, 2917–2942 (2022). https://doi.org/10.1007/s41980-021-00676-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-021-00676-7

Keywords

Mathematics Subject Classification

Navigation