Skip to main content
Log in

Chain Mixing, Shadowing Properties and Multi-transitivity

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

We prove that a map f is chain mixing if and only if \(f^r\times f^s\) is chain transitive for some positive integers rs. We prove that a map which has the average shadowing property with dense \(\underline{0}\)-recurrent points is transitive, and by this result we point out that a map is multi-transitive if it has the average shadowing property and an invariant Borel probability measure with full support. Moreover, we show that \(\Delta \)-mixing, the completely uniform positive entropy and the average shadowing property are equivalent mutually for a surjective map which has the shadowing property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmadi Dastjerdi, D., Hosseini, M.: Sub-shadowings. Nonlinear Anal. 72, 3759–3766 (2010)

    Article  MathSciNet  Google Scholar 

  2. Akin, E.: The General Topology of Dynamical Systems. Graduate Studies in Mathematics. American Mathematics Society, Providence (1993)

  3. Blanchard, F.: Fully Positive Topological Entropy and Topological Mixing. Contemporary Mathematical Symbolic Dynamics and Applications. American Mathematical Society, Providence, pp 95–105 (1992)

  4. Blank, M.L.: Metric properties of \(\varepsilon \)-trajectories of dynamical systems with stochastic behaviour. Ergodic Theory Dyn. Syst. 8, 365–378 (1988)

    Google Scholar 

  5. Blank, M. L.: Deterministic properties of stochastically perturbed dynamical systems (Russian). Teor. Veroyatn. Primen. 33, 659–671 (1988). Translation in Theory Probab. Appl. 33, 612–623 (1988)

  6. Chen, Z.J., Li, J., Lü, J.: Point transitivity, \(\Delta \)-transitivity and multi-minimality. Ergodic Theory Dyn. Syst. 35, 1423–1442 (2015)

    Google Scholar 

  7. Fakhari, A., Ghane, F.H.: On shadowing: ordinary and ergodic. J. Math. Anal. Appl. 364, 151–155 (2010)

    Article  MathSciNet  Google Scholar 

  8. Glasner, E., Ye, X.D.: Local entropy theory. Ergodic Theory Dyn. Syst. 29, 321–356 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gu, R.B.: The asymptotic average shadowing property and transitivity. Nonlinear Anal. 67, 1680–1689 (2007)

    Article  MathSciNet  Google Scholar 

  10. Huang, W., Li, S.M., Shao, S., Ye, X.D.: Null systems and sequence entropy pairs. Ergodic Theory Dyn. Syst. 23, 1505–1523 (2003)

    Article  MathSciNet  Google Scholar 

  11. Kulczycki, M., Kwietniak, D., Oprocha, P.: On almost specification and average shadowing properties. Fund. Math. 224, 241–278 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kulczycki, M., Oprocha, P.: Properties of dynamical systems with the asymptotic average shadowing property. Fund. Math. 212, 35–52 (2011)

    Article  MathSciNet  Google Scholar 

  13. Ku̇rka, P.: Topological and Symbolic Dynamicals. Societe Mathematique de France, Paris (2004)

    Google Scholar 

  14. Kerr, D., Li, H.F.: Independence in topological and \(C^{*}\)-dynamics. Math. Ann. 338, 869–926 (2007)

    Google Scholar 

  15. Kwietniak, D., Oprocha, P.: A note on the average shadowing property for expansive maps. Topol. Appl. 159, 19–27 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kwietniak, D., Oprocha, P.: On weak mixing, minimality and weak disjoiness of all iterates. Ergodic Theory Dyn. Syst. 32, 1661–1672 (2012)

    Article  Google Scholar 

  17. Moothathu, T.K.S.: Diagonal points having dense orbit. Colloq. Math. 120, 127–138 (2010)

    Article  MathSciNet  Google Scholar 

  18. Niu, Y.X.: The average-shadowing property and strong ergodicity. J. Math. Anal. Appl. 376, 528–534 (2011)

    Article  MathSciNet  Google Scholar 

  19. Oprocha, P., Dastjerdi, D.A., Hosseini, M.: On partial shadowing of complete pseudo-orbits. J. Math. Anal. Appl. 402, 47–56 (2013)

    Article  MathSciNet  Google Scholar 

  20. Park, J., Zhang, Y.: Average shadowing properties on compact metric spaces. Commun. Korean Math. Soc. 21, 355–361 (2006)

    Article  MathSciNet  Google Scholar 

  21. Richeson, D., Wiseman, J.: Chain recurrence rates and topological entropy. Topol. Appl. 156, 251–261 (2008)

    Article  MathSciNet  Google Scholar 

  22. Wang, H.Y., Zeng, P.: On partial shadowing of average pseudo-orbits. Sci. Chin. Math. 46, 781–792 (2016). (in Chinese)

    Google Scholar 

  23. Wang, Y., Niu, Y.X.: Strong ergodicity of systems with the average shadowing property. Dyn. Syst. 29(1), 18–25 (2014)

    Article  MathSciNet  Google Scholar 

  24. Yang, R.S., Shen, S.L.: Psuedo-orbit-tracing and completely positive entropy. Acta Math. Sin. 42, 99–104 (1999). (in Chinese)

    MATH  Google Scholar 

  25. Ye, X.D., Huang, W., Shao, S.: Introduction of Topological Dynamical Systems. Science Press, Beijing (2008)

    Google Scholar 

  26. Wu, X.X., Oprocha, P., Chen, G.R.: On various definitions of shadowing with average error in tracing. Nonlinearity 29, 1942–1972 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by National Nature Science Funds of China (Grant Nos. 11471125, 11771149). The authors would like to thank the referees for their helpful suggestions and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heman Fu.

Additional information

Communicated by Mohammad Reza Koushesh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fu, H., Diao, S. et al. Chain Mixing, Shadowing Properties and Multi-transitivity. Bull. Iran. Math. Soc. 45, 1605–1618 (2019). https://doi.org/10.1007/s41980-019-00218-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-019-00218-2

Keywords

Mathematics Subject Classification

Navigation