Skip to main content
Log in

On the Entropy Formulas and Solitons for the Ricci-Harmonic Flow

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

This paper is concerned with entropy monotonicity formulas and classification of gradient almost soliton for Ricci-harmonic flow. The new entropy formulas introduced here are monotone in general along the flow and constant exactly on shrinker or expander as the case may be. The consequence of this is the nonexistence of periodic solutions except those that are gradient solitons. Furthermore, the paper discusses gradient almost Ricci-harmonic soliton with respect to a fixed metric, not minding the dynamical nature of the flow but treating the defining elliptic equations and relying on analytic techniques. Finally, we are able to classify gradient almost Ricci-harmonic solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abolarinwa, A.: Differential Harnack and logarithmic Sobolev inequalities along Ricci-harmonic map flow. Pac. J. Math. 278(2), 257–290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abolarinwa, A.: Evolution and monotonicity of the first eigenvalue of \(p\)-Laplacian under the Ricci-harmonic flow. J. Appl. Anal. 21(2), 147–60 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abolarinwa, A.: Eigenvalues of weighted-Laplacian under the extended Ricci flow. Adv. Geom. arXiv:1604.05884v1 (2018) (to appear)

  4. Abolarinwa, A.: Basic structural equations for almost Ricci-harmonic solitons and applications. arXiv:1806.09190 (2018)

  5. Abolarinwa, A., Mao, J.: The first eigenvalue of the \(p\)-Laplacian on time dependent Riemannian metrics. arXiv:1605.01882 [math.DG] (2016)

  6. Barros, A., Riebeiro Jr., E.: Some characterizations for compact almost Ricci solitons. Proc. Am. Math. Soc. 140(3), 1033–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, B., Knopf, D.: The Ricci Flow: An Introduction. AMS, Providence (2004)

    Book  MATH  Google Scholar 

  8. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci Flow: An Introduction. American Mathematics Society, Providence (2006)

    MATH  Google Scholar 

  9. Chow, B., Chu, S., Glickenstein, D., Guenther, C., Idenberd, J., Ivey, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci Flow: Techniques and Applications. Part I, Geometric Aspect, pp. 189–284. AMS, Providence (2008)

    Google Scholar 

  10. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20, 385–524 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifold. Am. J. math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feitosa, F.E., Filho, A., Freitas, A., Gomes, J.N., Pina, R.S.: Gradient almost Ricci soliton warped product. arXiv:1507.03038v2

  14. Feldman, M., Ilmanen, T., Ni, L.: Entropy and reduced distance for Ricci expanders. J. Geom. Anal. 15(1), 49–62 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 253–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleiner, B., Lott, J.: Note on Perelman’s paper. Geom. Topol. 12, 2587–2858 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mantegazza, C., Müller, R.: Perelman’s entropy functional at Type I singularities of the Ricci flow. J. Reine Angew. Math. (Crelles Journal) (preprint, to appear). arXiv:1205.4143 (2012)

  19. Müller, R.: Monotone volume formulas for geometric flow. J. Reine Angew. Math. 643, 39–57 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Ecol. Norm. Sup. 4(45), 101–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perelman, G.: The entropy formula for the Ricci flow and its geometric application. arXiv:math.DG/0211159v1 (2002)

  22. Pigola, S., Rigoli, M., Rimoldi, M., Setti, A.G.: Ricci almost solitons. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 10(4), 757–799 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Zhu, A.: Differential Harnack inequalities for the backward heat equation with potential under the harmonic Ricci flow. J. Math. Anal. Appl 406, 502–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abimbola Abolarinwa.

Additional information

Communicated by Fatemeh Helen Ghane.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolarinwa, A., Oladejo, N.K. & Salawu, S.O. On the Entropy Formulas and Solitons for the Ricci-Harmonic Flow. Bull. Iran. Math. Soc. 45, 1177–1192 (2019). https://doi.org/10.1007/s41980-018-00192-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-00192-1

Keywords

Mathematics Subject Classification

Navigation