Skip to main content

Advertisement

Log in

The Next Generation for Manufacturing Competitiveness?: Investigating the Influence of Industry-Driven Outreach on Children Career Perceptions

  • Published:
Journal for STEM Education Research Aims and scope Submit manuscript

Abstract

Manufacturing is considered one of the major economic drivers in the United States. However, a challenge for manufacturing competitiveness can be the negative perception of the industry held by children, and society as a whole, which may make them reluctant to pursue manufacturing careers and fulfill the projected workforce demands. Accordingly, there have been a number of talent pipeline initiatives to address the issues related to (1) the availability of a skilled workforce, (2) the preparation of students for the jobs of tomorrow, and (3) teacher access to the tools necessary to inspire children to pursue high-demand career pathways. While these industry-driven outreach initiatives are often developed with the best intentions, research attempts focused on better understanding the influences of these initiatives on children’s perceptions of manufacturing-related careers are necessary. Therefore, this study focused on investigating the career perceptions of children (Grades K-8) and the influence of an industry-led summer camp focused on robotics in manufacturing. To do so, data were collected from career-perception surveys and a “Draw-A-Manufacturer” test, which were administered before and after the camp experience. The influences of the summer camp on the participants’ career perceptions and interests are presented and used as a foundation for discussions and recommendations for developing outreach initiatives and preparing children for the future of work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adecco (2014). Mind the skills gap: How the American workforce must evolve to lead the global economy of the future. Retrieved June 10, 2018, from http://pages.adeccousa.com/rs/adeccousa/%20images/2014-mind-the-skills-gap.pdf.

  • Advancing Excellence in P-12 Engineering Education (2018). Engineering: A national imperative: Phase 1 establishing content and progressions of learning in engineering. Author.

  • Asunda, P. A. (2012). Standards for technological literacy and STEM education delivery through career and technical education programs. Journal of Technology Education, 23(2), 44–60.

    Article  Google Scholar 

  • Barton, A. C., Tan, E., & Greenberg, D. (2017). The makerspace movement: Sites of possibilities for equitable opportunities to engage underrepresented youth in STEM. Teachers College Record, 119(6), 1–44.

    Google Scholar 

  • Bell, A. (2007). Designing and testing questionnaires for children. Journal of Research in Nursing, 12(5), 461–469.

    Article  Google Scholar 

  • Berry III, R. Q., Bull, G., Browning, C., Thomas, C. D., Starkweather, K., & Aylor, J. H. (2010). Preliminary considerations regarding use of digital fabrication to incorporate engineering design principles in elementary mathematics education. Contemporary Issues in Technology and Teacher Education, 10(2), 167–172.

    Google Scholar 

  • Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377.

    Google Scholar 

  • Borgers, N. & Hox, J.J. (2000). Reliability of responses in questionnaire research with children. Paper presented at the 5th International Conference on Logic and Methodology, Cologne, Germany.

  • Borgers, N., & Hox, J. (2001). Item nonresponse in questionnaire research with children. Journal of Official Statistics, 17(2), 321–335.

    Google Scholar 

  • Borgers, N., De Leeuw, E., & Hox, J. (2000). Children as respondents in survey research: Cognitive development and response quality. Bulletin of Sociological Methodology, 66(1), 60–75.

    Article  Google Scholar 

  • Bosman, L. B. & Strimel, G. J. (2018). Examining pre-service engineering technology teacher perceptions of manufacturing. Paper presented at the world engineering forum and global engineering deans council, Albuquerque, NM.

  • Carrie, H. (2018). Needed: A reform of America's 20th century education system to enter the 21st century global STEM economy. K-12 STEM Education, 4(3), 367–375.

    Google Scholar 

  • Chapin, T. K., Pfuntner, R. C., Stasiewicz, M. J., Wiedmann, M., & Orta-Ramirez, A. (2015). Development and evaluation of food safety modules for K-12 science education. Journal of Food Science Education, 14(2), 48–53.

    Article  Google Scholar 

  • Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The effects of a STEM intervention on elementary students' science knowledge and skills. School Science and Mathematics, 113(5), 215–226.

    Article  Google Scholar 

  • Deloitte. (2017). 2017 public perception of the US manufacturing industry study. Retrieved April 20, 2018, fromhttps://www2.deloitte.com/us/en/pages/manufacturing/articles/public-perception-of-the-manufacturing-industry.html.

  • Deloitte & The Manufacturing Institute (2018). Skills gap and the future of work study. Retrieved December 12, 2018, from. Retrieved from https://documents.deloitte.com/insights/2018DeloitteSkillsGapFoWManufacturing.

  • Deloitte & Touche LLP. (2017). Manufacturing matters: The public’s view of US manufacturing. Retrieved June 10, 2018https://www2.deloitte.com/us/en/pages/manufacturing/articles/public-perception-of-the-manufacturing-industry.html.

  • Economics, O. (2019). How robots change the world: What automation really means for jobs and productivity. London: Author.

    Google Scholar 

  • Huber, R. A., & Burton, G. M. (1995). What do students think scientists look like? School Science and Mathematics, 95(7), 371–376.

    Article  Google Scholar 

  • Knight, J. L. (2015). Preparing elementary school counselors to promote career development: Recommendations for school counselor education programs. Journal of Career Development, 42(2), 75–85.

    Article  Google Scholar 

  • Langin, K. (2018). What does a scientist look like? Children are drawing women more than ever before. Science. https://doi.org/10.1126/science.aat6337.

  • Lee, K. H. (2017). A perceptions gap, not a skills gap, may be manufacturing’s biggest problem when looking for new hires. Medill News Service. Retrieved from June 2, 2018,http://dc.medill.northwestern.edu/blog/2017/08/23/a-perception-gap-not-a-skills-gap-may-be-manufacturings-biggest-problem-when-looking-for-new-hires/#sthash.XcL9rHs2.v0UCtJ1g.dpbs.

  • Li, Y., Huang, Z., Jiang, M., & Chang, T.-W. (2016). The effect on pupils' science performance and problem-solving ability through Lego: An engineering design-based modeling approach. Educational Technology & Society, 19(3), 143–156.

    Google Scholar 

  • Mahoney, J. L., Levine, M. D., & Hinga, B. (2010). The development of after-school program educators through university-community partnerships. Applied Developmental Science, 14(2), 89–105.

    Article  Google Scholar 

  • Matsumoto, S., Fujimoto, N., Teranishi, M., Takeno, H., & Tokuyasu, T. (2016). A brush coating skill training system for manufacturing education at Japanese elementary and junior high schools. Artificial Life and Robotics, 21(1), 69–78.

    Article  Google Scholar 

  • Mawyer, A. (2016). Perceptions of the manufacturing industry among secondary students (Unpublished Masters Thesis). Virginia Polytechnic Institute and State University, Blacksburg, VA.

  • McMenamin, E. (2015). The growing skills gap in manufacturing. Quality, 54(9), 22–23.

    Google Scholar 

  • National Association of Manufacturers. (2019). 2019 1st quarter manufacturers' outlook survey. Washington, DC: Author.

    Google Scholar 

  • National Science & Technology Council. (2018a). Charting a course for success: America’s strategy for STEM education. Washington, DC: Author.

    Google Scholar 

  • National Science & Technology Council. (2018b). Strategy for American leadership in advanced manufacturing. Washington, DC: Author.

    Google Scholar 

  • Nemiro, J., Larriva, C., & Jawaharlal, M. (2017). Developing creative behavior in elementary school students with robotics. Journal of Creative Behavior, 51(1), 70–90.

    Article  Google Scholar 

  • Rosendin, N., & Gielczyk, A. (2018). Narrowing the skills gap to ensure the future of manufacturing: Boeing and CTE. Techniques, 93(1), 20–23.

    Google Scholar 

  • Starkweather, K. N. (2015). Politics and policy. In P. J. Williams, A. Jones, & C. Buntting (Eds.), The future of technology education (pp. 239–252). Singapore: Springer Nature.

  • Strimel, G. J., Grubbs, M. E., & Wells, J. G. (2016). Engineering education: A clear decision. Technology & Engineering Teacher, 76(1), 19–24.

    Google Scholar 

  • The Center for Advancement of Informal Science Education (2019). What are the important gaps in informal STEM education research? Retrieved April 20, 2018, from https://www.informalscience.org/research-agendas#Learning%20Through%20Making%20and%20Tinkering.

  • The Manufacturing Institute & Deloitte. (2015). The skills gap in U.S. manufacturing: 2015 and beyond. Washington, DC: Deloitte Development LLC.

    Google Scholar 

  • Tyler-Wood, T., Ellison, A., Lim, O., & Periathiruvadi, S. (2012). Bringing up girls in science (BUGS): The effectiveness of an afterschool environmental science program for increasing female students’ interest in science careers. Journal of Science Education & Technology, 21(1), 46–55.

    Article  Google Scholar 

  • Welde, A. M. J., Bernes, K. B., Gunn, T. M., & Ross, S. A. (2016). Career education at the elementary school level: Student and intern teacher perspectives. Journal of Career Development, 43(5), 426–446.

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted with support from the Indiana Next Generation Manufacturing Competitiveness Center and the Wabash Heartland Innovation Network regional cultivation fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg J. Strimel.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Survey Questions

Table 6 Grades K – 2 pre- and post-survey questions
Table 7 Grades 3–8 pre- and post-survey questions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strimel, G.J., Krause, L., Bosman, L. et al. The Next Generation for Manufacturing Competitiveness?: Investigating the Influence of Industry-Driven Outreach on Children Career Perceptions. Journal for STEM Educ Res 3, 232–258 (2020). https://doi.org/10.1007/s41979-020-00028-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41979-020-00028-w

Keywords

Navigation