Skip to main content

Advertisement

Log in

Evaluation of Monthly Precipitation Data from Three Gridded Climate Data Products over Nigeria

  • Original Paper
  • Published:
Remote Sensing in Earth Systems Sciences Aims and scope Submit manuscript

Abstract

The use of satellite and reanalysis weather product is gaining traction in the scientific community especially in developing worlds where in situ data are sparse. Tropical locations have dynamic and widely variable climate which needs to be continuously monitored. The efficiency of these products in capturing the climatic dynamics of these regions is important. The aim of this research is to investigate the performance of three gridded precipitation products (the University of Delaware (UDEL), NOAA’s precipitation reconstruction over land (NOAA), and Global Precipitation Climatology Centre (GPCC)) across 21 locations within tropical Nigeria. The performance of the gridded data was assessed with gauge data from the Nigerian Meteorological Services (NIMET) over a period of 51 years (1960–2010). Correlation values in the range 0.68–0.92, 0.69–0.92 and 0.30–0.93 were obtained for GPCC, NOAA, and UDEL respectively in all stations. The three products have poor performance in the northern stations of the country during the dry season but good performance in all stations during the wet season. The GPCC gridded product was found to have the best performance over the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data used in this study are proprietary but can be requested from the Nigerian Meteorological Agency, Lagos, Nigeria.

References

  1. Abd Elhamid AM, Eltahan AM, Mohamed LM, Hamouda IA (2020) Assessment of the two satellite-based precipitation products trmm and rfe rainfall records using ground based measurements. Alex Eng J 59:1049–1058

    Article  Google Scholar 

  2. Abdelwares M, Lelieveld J, Zittis G, Haggag M, Wagdy A (2020) A comparison of gridded datasets of precipitation and temperature over the eastern nile basin region. Euro-Mediterr J Environ Integr 5:1–16

    Article  Google Scholar 

  3. Adeyewa ZD, Nakamura K (2003) Validation of TRMM Radar Rainfall Data over Major Climatic Regions in Africa. J Appl Meteorol 42:331–347. https://doi.org/10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2

  4. AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39

  5. Akinsanola AA, Ogunjobi KO, Ajayi VO, Adefisan EA, Omotosho JA, Sanogo S (2016) Comparison of five gridded precipitation products at climatological scales over west africa. Meteorog Atmos Phys. https://doi.org/10.1007/s00703-016-0493-6

  6. Akinyemi DF, Ayanlade OS, Nwaezeigwe JO, Ayanlade A (2020) A comparison of the accuracy of multi-satellite precipitation estimation and ground meteorological records over southwestern nigeria. Remote Sens Earth Syst Sci 3:1–12

    Article  Google Scholar 

  7. Anagnostou EN, Negri AJ, Adler RF (1999) Statistical Adjustment of Satellite Microwave Monthly Rainfall Estimates over Amazonia. J Appl Meteorol 38:1590–1598

    Article  Google Scholar 

  8. Atiah WA, Tsidu GM, Amekudzi LK (2020) Investigating the merits of gauge and satellite rainfall data at local scales in ghana, west africa. Weather Clim Extremes 30:100292

    Article  Google Scholar 

  9. Camberlin P, Barraud G, Bigot S, Dewitte O, Makanzu Imwangana F, Maki Mateso J-C, Martiny N, Monsieurs E, Moron V, Pellarin T et al (2019) Evaluation of remotely sensed rainfall products over central africa. Q J R Meteorol Soc 145:2115–2138

    Article  Google Scholar 

  10. Chen M, Xie JE, Janowiak P, Arkin PA (2002) Global land precipitation: A 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  11. Da Silva NA, Webber BG, Matthews AJ, Feist MM, Stein TH, Holloway CE, Abdullah MF (2021) Validation of gpm imerg extreme precipitation in the maritime continent by station and radar data. Earth Space Sci 8:e2021EA001738

    Article  Google Scholar 

  12. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, K\(\mathring{a}\)llberg P, Kóhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

  13. Dezfuli AK, Ichoku CM, Mohr KI, Huffman GJ (2017) Precipitation characteristics in west and east africa from satellite and in situ observations. J Hydrometeorol 18:1799–1805

    Article  Google Scholar 

  14. Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor SJ, Ropelewski CF (2007) Validation of satellite rainfall products over East Africa’s complex topography. Int J Remote Sens 28:1503–1526. https://doi.org/10.1080/01431160600954688

    Article  Google Scholar 

  15. Dinku T, Connor SJ, Ceccato P, Ropelewski CF (2008) Comparison of global gridded precipitation products over a mountainous region of africa. Int J Climatol 28:1627–1638. https://doi.org/10.1002/joc.1669

    Article  Google Scholar 

  16. Erazo B, Bourrel L, Frappart F, Chimborazo O, Labat D, Dominguez-Granda L, Matamoros D, Mejia R (2018) Validation of satellite estimates (tropical rainfall measuring mission, trmm) for rainfall variability over the pacific slope and coast of ecuador. Water 10:213

    Article  Google Scholar 

  17. Fuwape IA, Ogunjo ST (2016) Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate. J Atmos Sol Terr Phys 150:61–68. https://doi.org/10.1016/j.jastp.2016.10.010

    Article  Google Scholar 

  18. Fuwape IA, Ogunjo ST, Dada JB, Ashidi GA, Emmanuel I (2016) Phase synchronization between tropospheric radio refractivity and rainfall amount in a tropical region. J Atmos Sol Terr Phys 149:46–51. https://doi.org/10.1016/j.jastp.2016.09.009

  19. Fuwape IA, Ogunjo ST, Oluyamo SS, Rabiu AB (2017) Spatial variation of deterministic chaos in mean daily temperature and rainfall over nigeria. Theor Appl Climatol 130:119–132. https://doi.org/10.1007/s00704-016-1867-x

    Article  Google Scholar 

  20. Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P, Yoo SH (2015) Nasa global precipitation measurement (gpm) integrated multi-satellite retrievals for gpm (imerg). Algoritm Theor Basis Doc Vers 4:26

    Google Scholar 

  21. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The ncep/ncar 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  22. Köppen W (1900) Versuch einer klassifikation der kli- mate, vorzugsweise nach ihren beziehungen zur pflanzen- welt. Geogr Zeitschr 6:593–611

    Google Scholar 

  23. Koutsouris AJ, Chen D, Lyon SW (2016) Comparing global precipitation data sets in eastern africa: a case study of kilombero valley, tanzania. Int J Climatol 36:2000–2014. https://doi.org/10.1002/joc.4476

    Article  Google Scholar 

  24. Lamptey BL (2008) Comparison of Gridded Multisatellite Rainfall Estimates with Gridded Gauge Rainfall over West Africa. J Appl Meteorol Climatol 47:185–205. https://doi.org/10.1175/2007JAMC1586.1

    Article  Google Scholar 

  25. Lee J, Lee E-H, Seol K-H (2019) Validation of integrated multisatellite retrievals for gpm (imerg) by using gauge-based analysis products of daily precipitation over east asia. Theor Appl Climatol 137:2497–2512

    Article  Google Scholar 

  26. Longobardi A, Villani P (2009) Trend analysis of annual and seasonal rainfall time series in the mediterranean area. Int J Climatol 30:1538–1546. https://doi.org/10.1002/joc.2001

    Article  Google Scholar 

  27. Matsuura K, Willmott CJ (2001) Terrestrial air temperature: 1900-2010 gridded monthly time series (version 3.01). http://climate.geog.udel.edu/~climate/html_pages/Global2011/README.GlobalTsT2011.html

  28. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG (2012) An overview of the global historical climatology network-daily database. J Atmos Ocean Technol 29:897–910. https://doi.org/10.1175/JTECH-D-11-00103.1

    Article  Google Scholar 

  29. Nashwan MS, Shahid S, Wang X (2019) Uncertainty in estimated trends using gridded rainfall data: a case study of bangladesh. Water 11:349

    Article  Google Scholar 

  30. Negi H, & Kanda N (2020) An appraisal of spatio-temporal characteristics of temperature and precipitation using gridded datasets over nw-himalaya. In: Climate change and the white world (pp 219–238). Springer

  31. Nicholson S, Klotter D, Zhou L, Hua W (2019) Validation of satellite precipitation estimates over the congo basin. J Hydrometeorol 20:631–656

    Article  Google Scholar 

  32. Nicholson SE, Some B, McCollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of trmm and other rainfall estimates with a high-density gauge dataset for west africa. part i: Validation of gpcc rainfall product and pre-trmm satellite and blended products. J Appl Meteorol 42:1337–1354. https://doi.org/10.1175/1520-0450(2003)042<1337:VOTAOR>2.0.CO;2

  33. Nwachukwu PN, Satge F, Yacoubi SE, Pinel S, Bonnet M-P (2020) From trmm to gpm: how reliable are satellite-based precipitation data across nigeria? Remote Sens 12:3964

    Article  Google Scholar 

  34. Odekunle TO, Balogun EE, Ogunkoya OO (2005) On the prediction of rainfall onset and retreat dates in Nigeria. Theor Appl Climatol 81:101–112. https://doi.org/10.1007/s00704-004-0108-x

    Article  Google Scholar 

  35. Ogunjo S, Fuwape I, Oluyamo S, Rabiu B (2019) Spatial dynamical complexity of precipitation and temperature extremes over africa and south america. Asia-Pac J Atmos Sci 1–14

  36. Okoro UK, Chen W, Chineke C, Nwofor O (2014) Comparative analysis of gridded datasets and gauge measurements of rainfall in the Niger Delta region. Res J Environ Sci 8:373–390

    Article  Google Scholar 

  37. Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over west africa. Meteorol Appl 14:209–225

    Article  Google Scholar 

  38. Pettorelli N, Laurance WF, O’Brien TG, Wegmann M, Nagendra H, Turner W (2014) Satellite remote sensing for applied ecologists: opportunities and challenges. J Appl Ecol 51:839–848

    Article  Google Scholar 

  39. Ramarohetra J, Sultan B, Baron C, Gaiser T, Gosset M (2013) How satellite rainfall estimate errors may impact rainfed cereal yield simulation in west africa. Agric For Meteorol 180:118–131. http://www.sciencedirect.com/science/article/pii/S0168192313001548

  40. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) Gpcc full data reanalysis version 6.0 at 0.5: monthly land-surface precipitation from rain-gauges built on gts-based and historic data. https://doi.org/10.5676/dwd_gpcc.FD_M_V6_050/,5

  41. Tarnavsky E, Mulligan M, Husak G (2012) Spatial disaggregation and intensity correction of trmm-based rainfall time series for hydrological applications in dryland catchments. Hydrol Sci J 57:248–264. https://doi.org/10.1080/02626667.2011.637498

    Article  Google Scholar 

  42. Thiemig V, Rojas R, Zambrano-Bigiarini M, Levizzani V, De Roo A, Thiemig V, Rojas R, Zambrano-Bigiarini M, Levizzani V, Roo AD (2012) Validation of satellite-based precipitation products over sparsely gauged african river basins. J Hydrometeorol 13:1760–1783. https://doi.org/10.1175/JHM-D-12-032.1

    Article  Google Scholar 

  43. Wang J, Liu G, Zhu C (2020) Evaluating precipitation products for hydrologic modeling over a large river basin in the midwestern usa. Hydrol Sci J 65:1221–1238

    Article  Google Scholar 

  44. Wang W, Chen X, van Gelder PHAJM (2008) Detecting changes in extreme precipitation and extreme streamflow in the dongjiang river basin in southern china. Hydrol Earth Syst Sci 12:207–221

    Article  Google Scholar 

  45. Willmott CJ, Matsuura K, Legates D (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999). climate.geog.udel.edu/climate/html_pages/README.ghcn_ts2.html

  46. Xie P, Arkin PA (1997) Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558

    Article  Google Scholar 

  47. Zhen L, Lijuan C, Yani Z, Zhongwei Y (2016) Comparison of two homogenized datasets of daily maximum / mean / minimum temperature in china during 1960–2013. J Meteorol Res 30:53–66. https://doi.org/10.1007/s13351-016-5054-x.1

    Article  Google Scholar 

  48. Zhu J., Huang D-Q, Yan P-W, Huang Y, Kuang X-Y (2016) Can reanalysis datasets describe the persistent temperature and precipitation extremes over China? Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1912-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel T. Ogunjo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunjo, S.T., Olusegun, C.F. & Fuwape, I.A. Evaluation of Monthly Precipitation Data from Three Gridded Climate Data Products over Nigeria. Remote Sens Earth Syst Sci 5, 119–128 (2022). https://doi.org/10.1007/s41976-022-00069-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41976-022-00069-2

Keywords

Navigation