Skip to main content
Log in

Sequential dynamic threshold neural P systems

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

Dynamic threshold neural P systems (DTNP systems, for short) are a kind of distributed parallel computing systems abstracted from the spiking and dynamic threshold mechanisms of neurons. A DTNP system consists of several dynamic threshold neurons, and each neuron has a data unit and a threshold unit. The computational completeness of DTNP systems has been investigated. DTNP systems are synchronous systems, and a global clock is assumed to synchronize all threshold neurons. However, the assumption is biologically non-realistic. In this paper, we discuss DTNP systems working in sequential mode, i.e., sequential DTNP systems (SDTNP systems, in short). Based on the number of spikes of active neurons and the rule-application strategy, four sequentiality strategies are considered. It is proven that SDTP systems working in four sequentiality strategies are Turing universal number generating/accepting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pǎun, G. (2000). Computing with membranes. Journal of Computer System Sciences, 61(1), 108–143.

    MathSciNet  MATH  Google Scholar 

  2. Pǎun, G., Rozenberg, G., & Salomaa, A. (2010). The oxford handbook of membrane computing. New York: Oxford University Press.

    MATH  Google Scholar 

  3. Martin-Vide, C., Pazos, J., Pǎun, G., & Rodríguez-Patón, A. (2003). Tissue P systems. Theoretical Computer Science, 296(2), 295–326.

    MathSciNet  MATH  Google Scholar 

  4. Freund, R., Pǎun, G., & Pérez-Jiménez, M. J. (2005). Tissue-like P systems with channel-states. Theoretical Computer Science, 330(1), 101–116.

    MathSciNet  MATH  Google Scholar 

  5. Pǎun, G., & Pérez-Jiménez, M. J. (2010). Solving problems in a distributed way in membrane computing: DP systems. International Journal of Computers Communications & Control, 5(2), 238–250.

    Google Scholar 

  6. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-Del-Amor, M. A., et al. (2017). Computational efficiency of minimal cooperation and distribution in polarizationless P systems with active membranes. Fundamenta Informaticae, 153(1–2), 147–172.

    MathSciNet  MATH  Google Scholar 

  7. Song, B., & Pan, L. (2016). The computational power of tissue-like P systems with promoters. Theoretical Computer Science, 641, 43–52.

    MathSciNet  MATH  Google Scholar 

  8. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., & Vaszil, G. (2009). Variants of P colonies with very simple cell structure. International Journal of Computers Communications & Control, 4(3), 224–233.

    Google Scholar 

  9. Zhang, X., Liu, Y., Luo, B., & Pan, L. (2014). Computational power of tissue P systems for generating control languages. Information Sciences, 278(10), 285–297.

    MathSciNet  MATH  Google Scholar 

  10. Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2015). An unsupervised learning algorithm for membrane computing. Information Sciences, 304(20), 80–91.

    MATH  Google Scholar 

  11. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2016). An extended membrane system with active membranes to solve automatic fuzzy clustering problems. International Journal of Neural Systems, 26(3), 1650004–1-17.

    Google Scholar 

  12. Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Multiobjective fuzzy clustering approach based on tissue-like membrane systems. Knowledge-Based Systems, 125, 74–82.

    Google Scholar 

  13. Ionescu, M., Pǎun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71, 279–308.

    MathSciNet  MATH  Google Scholar 

  14. Pǎun, G. (2007). Spiking neural P systems with astrocyte-like control. Journal of Universal Computer Science, 13(11), 1707–1721.

    MathSciNet  Google Scholar 

  15. Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P systems with astrocytes. Neural Computation, 24(3), 805–825.

    MathSciNet  MATH  Google Scholar 

  16. Pan, L., & Pǎun, G. (2009). Spiking neural P systems with anti-spikes. International Journal of Computers Communications & Control, 4(3), 273–282.

    Google Scholar 

  17. Song, T., Pan, L., & Pǎun, G. (2014). Spiking neural P systems with rules on synapses. Theoretical Computer Science, 529, 82–95.

    MathSciNet  MATH  Google Scholar 

  18. Song, T., & Pan, L. (2015). Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Transactions on Nanobioscience, 14(4), 465–477.

    Google Scholar 

  19. Peng, H., Chen, R., Wang, J., Song, X., Wang, T., Yang, F., et al. (2017). Competitive spiking neural P systems with rules on synapses. IEEE Transactions on NanoBioscience, 16(8), 888–895.

    Google Scholar 

  20. Song, T., & Pan, L. (2016). Spiking neural P systems with request rules. Neurocomputing, 193, 193–200.

    Google Scholar 

  21. Cabarle, F. G. C., Adorna, H. N., Pérenz-Jiménez, M. J., & Song, T. (2015). Spiking neural P systems with structural plasticity. Neural Computing and Applications, 26(8), 1905–1917.

    Google Scholar 

  22. Wu, T., Pǎun, A., Zhang, Z., & Pan, L. (2017). Spiking neural P systems with polarizations. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3349–3360.

    MathSciNet  Google Scholar 

  23. Pan, L., Pǎun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with communication on request. International Journal of Neural Systems, 27(8), 1750042–1-13.

    Google Scholar 

  24. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., et al. (2017). Spiking neural P systems with multiple channels. Neural Networks, 95, 66–71.

    MATH  Google Scholar 

  25. Lv, Z., Bao, T., Zhou, N., Peng, H., Huang, X., Riscos-Núñez, A., et al. (2020). Spiking neural p systems with extended channel rules. International Journal of Neural Systems,. https://doi.org/10.1142/S0129065720500495.

    Article  Google Scholar 

  26. Peng, H., & Wang, J. (2019). Coupled neural P systems. IEEE Transactions on Neural Networks and Learning Systems, 30(6), 1672–1682.

    MathSciNet  Google Scholar 

  27. Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., et al. (2020). Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188(105064), 1–17.

    Google Scholar 

  28. Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., et al. (2020). Nonlinear spiking neural P systems. International Journal of Neural Systems,. https://doi.org/10.1142/S0129065720500082.

    Article  Google Scholar 

  29. Peng, H., Bao, T., Luo, X., Wang, J., Song, X., Riscos-Núñez, A., et al. (2020). Dendrite P systems. Neural Networks, 127, 110–120.

    Google Scholar 

  30. Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013). Fuzzy reasoning spiking neural P system for fault diagnosis. Information Sciences, 235(20), 106–116.

    MathSciNet  MATH  Google Scholar 

  31. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J., & Wang, T. (2013). Weighted fuzzy spiking neural P systems. IEEE Transactions on Fuzzy Systems, 21(2), 209–220.

    Google Scholar 

  32. Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(5), 1440006–1-16.

    Google Scholar 

  33. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2015). Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems, 30(3), 1182–1194.

    Google Scholar 

  34. Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2017). Fault diagnosis of power systems using fuzzy tissue-like P systems. Integrated Computer-Aided Engineering, 24(4), 401–411.

    Google Scholar 

  35. Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M. J., Yu, W., et al. (2018). Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Transactions on Smart Grid, 9(5), 4777–4784.

    Google Scholar 

  36. Wang, J., Peng, H., Yu, W., Ming, J., Pérez-Jiménez, M. J., Tao, C., et al. (2019). Interval-valued fuzzy spiking neural P systems for fault diagnosis of power transmission networks. Engineering Applications of Artificial Intelligence, 82, 102–109.

    Google Scholar 

  37. Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing, 115, 81–91.

    Google Scholar 

  38. Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane computing and image processing: a short survey. Journal of Membrane Computing, 1, 58–73.

    MathSciNet  Google Scholar 

  39. Li, B., Peng, H., Wang, J., & Huang, X. (2020). Multi-focus image fusion based on dynamic threshold neural P systems and surfacelet transform. Knowledge-Based Systems, 196(105794), 1–12.

    Google Scholar 

  40. Li, B., Peng, H., Luo, X., Wang, J., Song, X., Pérez-Jiménez, M. J., et al. (2020). Medical image fusion method based on coupled neural p systems in nonsubsampled shearlet transform domain. International Journal of Neural Systems,. https://doi.org/10.1142/S0129065720500501.

    Article  Google Scholar 

  41. Cavaliere, M., Ibarra, O. H., Pǎun, G., Ecegioglu, O., Ionescu, M., & Woodworth, S. (2009). Asynchronous spiking neural P systems. Theoretical Computer Science, 410(24), 2352–2364.

    MathSciNet  MATH  Google Scholar 

  42. Song, T., Zou, Q., Liu, X., & Zeng, X. (2015). Asynchronous spiking neural P systems with rules on synapses. Neurocomputing, 151(3), 1439–1445.

    Google Scholar 

  43. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2015). Asynchronous spiking neural P systems with structural plasticity. In International conference on unconventional computation and natural computation. Lecture notes in computer science (Vol. 9252, pp. 132–143).

  44. Ibarra, O. H., Pǎun, A., & Rodríguez-Patón, A. (2009). Sequential SNP systems based on min/max spike number. Theoretical Computer Science, 410, 2982–2991.

    MathSciNet  MATH  Google Scholar 

  45. Zhang, X., Luo, B., Fang, X., & Pan, L. (2012). Sequential spiking neural P systems with exhaustive use of rules. BioSystems, 108, 52–62.

    Google Scholar 

  46. Song, T., Pan, L., Jiang, K., Song, B., & Chen, W. (2013). Normal forms for some classes of sequential spiking neural P systems. IEEE Transactions on Nanobioscience, 12(3), 255–264.

    Google Scholar 

  47. Jiang, K., Song, T., & Pan, L. (2013). Universality of sequential spiking neural P systems based on minimum spik number. Theoretical Computer Science, 499, 88–97.

    MathSciNet  MATH  Google Scholar 

  48. Cabarle, F. G. C., Adorna, H. N., & Pérez-Jiménez, M. J. (2016). Sequential Spiking neural P systems with structural plasticity based on max/min spike number. Neural Computing and Applications, 27(5), 1337–1347.

    Google Scholar 

  49. Zhang, X., Zeng, X., Luo, B., & Pan, L. (2014). On some classes of sequential spiking neural P systems. Neural Computation, 26(5), 974–997.

    MathSciNet  MATH  Google Scholar 

  50. Bibi, A., Xu, F., Adorna, H. N., & Cabarle, F. G. C. (2019). Sequential spiking neural P systems with local scheduled synapses without delay. Complexity, Paper id 7313414, 1–12.

  51. Peng, H., Wang, J., Pérenz-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

    Google Scholar 

  52. Korec, I. (1996). Small universal register machines. Theoretical Computer Science, 168(2), 267–301.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 62076206), and Research Foundation of the Education Department of Sichuan province (No. 17TD0034), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, T., Zhou, N., Lv, Z. et al. Sequential dynamic threshold neural P systems. J Membr Comput 2, 255–268 (2020). https://doi.org/10.1007/s41965-020-00060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00060-0

Keywords

Navigation