Skip to main content

Advertisement

Log in

Construction of Antibacterial and Bioactive Surface for Titanium Implant

  • Original Articles
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

Titanium (Ti) and its alloy are extensively used as hard tissue implant materials in the medical field due to their good mechanical and biological properties. However, implant-associated bacterial infection and delayed osseointegration of an implant to its surrounding bone tissue are still huge challenges to clinicians and material scientists in orthopedic and dental surgery. Therefore, a novel method to construct the antibacterial and bioactive surface for titanium implant was proposed in this study. Briefly, micro/nanostructure was fabricated on the surface of titanium by sandblasting and chemical etching, and silver nanoparticles were then immobilized on the surface by polydopamine (Ag–Ti). The treated sample showed the enhanced roughness, hydrophilicity, and corrosion resistance. And silver ions were released from the treated samples. Moreover, it was observed that the Ag–Ti sample surface covered many calcium phosphate compounds after immersed in simulated body fluid for 7 days. Furthermore, the results of biological tests demonstrated that the treated sample possessed a good antibacterial activity and biocompatibility. This study may provide a new insight for constructing of the antibacterial and bioactive surface for titanium implant to satisfy clinical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang T, Wan Y, Liu Z (2016) Fabrication of hierarchical micro/nanotopography on bio-titanium alloy surface for cytocompatibility improvement. J Mater Sci 51:9551–9561

    Article  Google Scholar 

  2. Niinomi M, Mech J (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. Behav Biomed Mater 1:30–42

    Article  Google Scholar 

  3. Ostrovska L, Vistejnova L, Dzugan J (2016) Biological evaluation of ultra-fine titanium with improved mechanical strength for dental implant engineering. J Mater Sci 51:3097–3110

    Article  Google Scholar 

  4. Zhu C, Bao NR, Chen S (2016) Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion. Appl Surf Sci 389:7–16

    Article  Google Scholar 

  5. Masse A, Bruno A, Bosetti M et al (2000) Prevention of pin track infection in external fixation with silver coated pins: clinical and microbiological results. J Biomed Mater Res 53:600–604

    Article  Google Scholar 

  6. Schrøder HA, Christoffersen H, Sørensen TS et al (1986) Fractures of the shaft of the tibia treated with Hoffmann external fixation. Arch Orthop Traum Su 105:28–30

    Article  Google Scholar 

  7. Mankin HJ, Hornicek FJ, Raskin KA (2005) Infection in massive bone allografts. Clin Ortho Relat Res 432:210–216

    Article  Google Scholar 

  8. Thakur AJ, Patankar J (1991) Treatment by uniplanar external fixation and early bone grafting. Bone Jt J 73:448–451

    Article  Google Scholar 

  9. Collins I, Wilson-MacDonald J, Chami G (2008) The diagnosis and management of infection following instrumented spinal fusion. Eur Spine J 17:445–450

    Article  Google Scholar 

  10. Weinstein MA, McCabe JP, Jr Cammisa P F (2000) Postoperative spinal wound infection: a review of 2,391 consecutive index procedures. Clin Spine Su 13:422–426

    Google Scholar 

  11. Verron E, Bouler JM, Guicheux J (2012) Controlling the biological function of calcium phosphate bone substitutes with drugs. Acta Biomater 8:3541–3551

    Article  Google Scholar 

  12. Kumar TSS, Madhumathi K, Rubaiya Y et al (2015) Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections. Front Bioeng Biotechnol 3:1–10

    Google Scholar 

  13. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  Google Scholar 

  14. Qin H, Cao H, Zhao Y et al (2014) In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials 35:9114–9125

    Article  Google Scholar 

  15. Yao X, Zhang X, Wu H et al (2014) Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation. Appl Surf Sci 292:944–947

    Article  Google Scholar 

  16. Zhang X, Ma Y, Lin N et al (2013) Microstructure, antibacterial properties and wear resistance of plasma Cu–Ni surface modified titanium. Surf Coat Tech 232:515–520

    Article  Google Scholar 

  17. Huo K, Zhang X, Wang H et al (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34:3467–3478

    Article  Google Scholar 

  18. Cheng H, Mao L, Xu X et al (2015) The bifunctional regulation of interconnected Zn-incorporated ZrO2 nanoarrays in antibiosis and osteogenesis. Biomater Sci 3:665–680

    Article  Google Scholar 

  19. Zhang X, Wang H, Li J et al (2016) Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium. Ceram Int 42:17095–17100

    Article  Google Scholar 

  20. Agarwal A, Weis TL, Schurr MJ et al (2010) Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials 31:680–690

    Article  Google Scholar 

  21. Cao H, Liu X (2010) Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:670–684

    Article  Google Scholar 

  22. Sambhy V, MacBride MM, Peterson BR et al (2006) Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808

    Article  Google Scholar 

  23. Zheng Y, Li J, Liu X et al (2012) Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface. Int J Nanomed 7:875–884

    Google Scholar 

  24. Wang Z, Sun Y, Wang D et al (2013) In situ fabrication of silver nanoparticle-filled hydrogen titanate nanotube layer on metallic titanium surface for bacteriostatic and biocompatible implantation. Int J Nanomed 8:2903–2916

    Google Scholar 

  25. Wang J, Li J, Qian S et al (2016) Antibacterial surface design of titanium-based biomaterials for enhanced bacteria-killing and cell-assisting functions against periprosthetic joint infection. ACS Appl Mater Inter 8:11162–11178

    Article  Google Scholar 

  26. Ren N, Li R, Chen L et al (2012) In situ construction of a titanate-silver nanoparticle-titanate sandwich nanostructure on a metallic titanium surface for bacteriostatic and biocompatible implants. J Mater Chem 22:19151–19160

    Article  Google Scholar 

  27. Shen X, Ma P, Hu Y et al (2015) Mesenchymal stem cell growth behavior on micro/nano hierarchical surfaces of titanium substrates. Colloid Surf B 127:221–232

    Article  Google Scholar 

  28. Flemming RG, Murphy CJ, Abrams GA et al (1999) Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 20(6):573–588

    Article  Google Scholar 

  29. Zhu X, Chen J, Scheideler L et al (2004) Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25(18):4087–4103

    Article  Google Scholar 

  30. Kubo K, Tsukimura N, Iwasa F et al (2009) Cellular behavior on TiO2 nanonodular structures in a micro-to-nanoscale hierarchy model. Biomaterials 30(29):5319–5329

    Article  Google Scholar 

  31. Liu X, Chu PK, Ding C (2010) Surface nano-functionalization of biomaterials. Mat Sci Eng R 70:275–302

    Article  Google Scholar 

  32. Zhu B, Lu Q, Yin J et al (2005) Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Eng 11:825–834

    Article  Google Scholar 

  33. Li BE, Li Y, Min Y et al (2015) Synergistic effects of hierarchical hybrid micro/nanostructures on the biological properties of titanium orthopaedic implants. RSC Adv 5:49552–49558

    Article  Google Scholar 

  34. Jia Z, Xiu P, Li M et al (2016) Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials 75:203–222

    Article  Google Scholar 

  35. Variola F, Yi JH, Richert L et al (2008) Tailoring the surface properties of Ti6Al4 V by controlled chemical oxidation. Biomaterials 29(10):1285–1298

    Article  Google Scholar 

  36. Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747

    Article  Google Scholar 

  37. Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2:66–81

    Article  Google Scholar 

  38. Saidin S, Chevallier P, Kadir MRA et al (2013) Polydopamine as an intermediate layer for silver and hydroxyapatite immobilisation on metallic biomaterials surface. Mater Sci Eng, C 33:4715–4724

    Article  Google Scholar 

  39. Tengvall P, Lundström I (1992) Physico-chemical considerations of titanium as a biomaterial. Clin Mater 9:115–134

    Article  Google Scholar 

  40. Shin DH, Shokuhfar T, Choi CK et al (2011) Wettability changes of TiO2 nanotube surfaces. Nanotechnology 22(31):315704

    Article  Google Scholar 

  41. Schakenraad JM, Busscher HJ, Wildevuur CRH et al (1986) The influence of substratum surface free energy on growth and spreading of human fibroblasts in the presence and absence of serum proteins. J Biomed Mater Res 20:773–784

    Article  Google Scholar 

  42. Zhao G, Raines AL, Wieland M et al (2007) Requirement for both micron-and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28(18):2821–2829

    Article  Google Scholar 

  43. Feng B, Weng J, Yang BC et al (2002) Surface characterization of titanium and adsorption of bovine serum albumin. Mater Charact 49:129–137

    Article  Google Scholar 

  44. Zhu LP, Jiang JH, Zhu BK et al (2011) Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer. Colloid Surf B 86:111–118

    Article  Google Scholar 

  45. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  Google Scholar 

  46. Ryu J, Ku SH, Lee M et al (2011) Bone-like peptide/hydroxyapatite nanocomposites assembled with multi-level hierarchical structures. Soft Matter 7:7201–7206

    Article  Google Scholar 

  47. Berger TJ, Spadaro JA, Chapin SE et al (1976) Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Ch 9:357

    Article  Google Scholar 

  48. Jiang P, Liang J, Lin C (2013) Construction of micro-nano network structure on titanium surface for improving bioactivity. Appl Surf Sci 280:373–380

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (51575320), Taishan Scholar Foundation (TS20130922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Y., Wang, G., Ren, B. et al. Construction of Antibacterial and Bioactive Surface for Titanium Implant. Nanomanuf Metrol 1, 252–259 (2018). https://doi.org/10.1007/s41871-018-0028-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-018-0028-5

Keywords

Navigation