Skip to main content
Log in

Distance Measurements Using Mode-Locked Lasers: A Review

  • Review Paper
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

Abstract

We present a progress review on the advance of distance measurements made at KAIST by making use of mode-locked lasers as the light source to meet ever-growing industrial demands on the measurement precision and functionality. Diverse principles exploited for the progress are described in this review with focus on four attributes: first, the optical spectrum of a mode-locked laser, distinctively called the frequency comb, permits multi-wavelength interferometry to be realized for absolute distance measurement up to several meters without losing the nanometer precision of well-established laser-based phase-measuring displacement measurement. Second, the frequency comb enables spectrally resolved interferometry for absolute distance measurement to be conducted with a nanometer resolution by Fourier transform analysis of the dispersive interference data captured using a spectrometer. Third, the mode-locked laser in the time domain appears as a train of ultrashort pulses, of which the time-of-flight is measured with a picosecond resolution by control of the pulse repetition rate with reference to the radio-frequency atomic clock. Fourth, the pulse-to-pulse cross-correlation occurring in the optical frequency domain is down-converted to the radio-frequency domain to achieve femtosecond pulse timing precision by means of dual-comb interference. All these principles based on unique spectral and temporal characteristics of ultrashort mode-locked lasers are anticipated to make contributions to the advance of nanotechnology particularly in manufacturing and metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(adapted from Ref. [49] with permission)

Fig. 6

(adapted from Ref. [49] with permission)

Fig. 7

(adapted from Ref. [50] with permission)

Fig. 8

(adapted from Ref. [50] with permission)

Fig. 9
Fig. 10

(adapted from Ref. [51] with permission)

Fig. 11

(adapted from Ref. [51] with permission)

Fig. 12

(adapted from Ref. [52] with permission)

Fig. 13
Fig. 14
Fig. 15

(adapted from Ref. [57] with permission)

Fig. 16

(adapted from Ref. [57] with permission)

Fig. 17

(adapted from Ref. [56] with permission)

Fig. 18
Fig. 19
Fig. 20

(adapted from Ref. [59] with permission)

Fig. 21

(adapted from Ref. [59] with permission)

Similar content being viewed by others

References

  1. Giacomo P (1984) News from the BIPM. Metrologia 20(1):25–30

    Article  Google Scholar 

  2. Quinn TJ (2003) Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40(2):103–133

    Article  MathSciNet  Google Scholar 

  3. Felder R (2005) Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003). Metrologia 42(4):323–325

    Article  Google Scholar 

  4. Amann M-C, Bosch TM, Lescure M, Myllylae RA, Rioux M (2001) Laser ranging: a critical review of unusual techniques for distance measurement. Opt Eng 40(1):10–19

    Article  Google Scholar 

  5. Berkovic G, Shafir E (2012) Optical methods for distance and displacement measurements. Adv Opt Photon 4(4):441–471

    Article  Google Scholar 

  6. Manske E, Jager G, Hausotte T, Fub R (2012) Recent developments and challenges of nanopositioning and nanomeasuring technology. Meas Sci Technol 23(7):074001

    Article  Google Scholar 

  7. Gao W, Kim S-W, Bosse H, Haitjema H, Chen YL, Lu XD, Knapp W, Weckenmann A, Extler WT, Kunzmann H (2015) Measurement technologies for precision positioning. CIRP Ann Manuf Technol 64(2):773–796

    Article  Google Scholar 

  8. Bobroff N (1993) Recent advances in displacement measuring interferometry. Meas Sci Technol 4(9):907–926

    Article  Google Scholar 

  9. Deferrari HA, Andrews FA (1966) Laser interferometric technique for measuring small-order vibration displacements. J Acoust Soc Am 39(5A):979–980

    Article  Google Scholar 

  10. Pernick BJ (1973) Self-consistent and direct reading laser homodyne measurement technique. Appl Opt 12(3):607–610

    Article  Google Scholar 

  11. Heydemann PLM (1981) Determination and correction of quadrature fringe measurement errors in interferometers. Appl Opt 20(19):3382–3384

    Article  Google Scholar 

  12. Gregorčič P, Požar T, Možina J (2009) Quadrature phase-shift error analysis using a homodyne laser interferometer. Opt Express 17(18):16322–16331

    Article  Google Scholar 

  13. Bobroff N (1987) Residual errors in laser interferometry from air turbulence and nonlinearity. Appl Opt 26(13):2676–2682

    Article  Google Scholar 

  14. Demarest FC (1998) High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Meas Sci Technol 9(7):1024–1030

    Article  Google Scholar 

  15. Wu C, Lawall J, Deslattes RD (1999) Heterodyne interferometer with subatomic periodic nonlinearity. Appl Opt 38(19):4089–4094

    Article  Google Scholar 

  16. Joo K-N, Ellis JD, Buice ES, Spronck JW, Munnig Schmidt RH (2010) High resolution heterodyne interferometer without detectable periodic nonlinearity. Opt Express 18(2):1159–1165

    Article  Google Scholar 

  17. Froome KD, Bradsell RH (1961) Distance measurement by means of a light ray modulated at a microwave frequency. J Sci Instrum 38(12):458–462

    Article  Google Scholar 

  18. Fujima I, Iwasaki S, Seta K (1998) High-resolution distance meter using optical intensity modulation at 28 GHz. Meas Sci Technol 9(7):1049–1052

    Article  Google Scholar 

  19. Guillory J, Smid R, Garcia-Marques J, Truong D, Alexandre C, Wallerand J-P (2016) High resolution kilometric range optical telemetry in air by radio frequency phase measurement. Rev Sci Instrum 87(7):075105

    Article  Google Scholar 

  20. Uttam D, Culshaw B (1985) Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique. J Lightwave Technol 3(5):971–977

    Article  Google Scholar 

  21. Kubota T, Nara M, Yoshino T (1987) Interferometer for measuring displacement and distance. Opt Lett 12(5):310–312

    Article  Google Scholar 

  22. Minoni U, Rovati L, Docchio F (1998) Absolute distance meter based on a frequency-modulated laser diode. Rev Sci Instrum 69(1):3992–3995

    Article  Google Scholar 

  23. Mateo AB, Barber ZW (2015) Precision and accuracy testing of FMCW ladar-based length metrology. Appl Opt 54(19):6019–6024

    Article  Google Scholar 

  24. Lu C, Liu G, Liu B, Chen F, Hu T, Zhuang Z, Xu X, Gan Y (2015) Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry. Opt Express 23(25):31662–31671

    Article  Google Scholar 

  25. Bender PL, Currie DG, Poultney SK, Alley CO, Dicke RH, Wilkinson DT, Eckhardt DH, Faller JE, Kaula WM, Mulholland JD, Plotkin HH, Silverberg EC, Williams JG (1973) The lunar laser ranging experiment. Science 182(4109):229–238

    Article  Google Scholar 

  26. Degnan JJ (1985) Satellite laser ranging: current status and future prospects. IEEE Trans Geosci Remote Sensing GE-23(4):398–413

    Article  Google Scholar 

  27. Pellegrini S, Buller GS, Smith JM, Wallace AM, Cova S (2000) Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas Sci Technol 11(6):712–716

    Article  Google Scholar 

  28. Kilpela A, Pennala R, Kostamovaara J (2001) Precise pulsed time-of-flight laser range finder for industrial distance measurements. Rev Sci Instrum 72(4):2197–2202

    Article  Google Scholar 

  29. Kikuta H, Iwata K, Nagata R (1986) Distance measurement by the wavelength shift of laser diode light. Appl Opt 25(17):2976–2980

    Article  Google Scholar 

  30. Xiaoli D, Katuo S (1998) High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry. Meas Sci Technol 9(7):1031–1035

    Article  Google Scholar 

  31. Dale J, Hughes B, Lancaster AJ, Lewis AJ, Reichold AJH, Warden MS (2014) Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells. Opt Express 22(20):24869–24893

    Article  Google Scholar 

  32. Lu C, Liu G, Liu B, Chen F, Gan Y (2016) Absolute distance measurement system with micron-grade measurement uncertainty and 24 m range using frequency scanning interferometry with compensation of environmental vibration. Opt Express 24(26):30215–30224

    Article  Google Scholar 

  33. Bourdet GL, Orszag AG (1979) Absolute distance measurements by CO2 laser multiwavelength interferometry. Appl Opt 18(2):225–227

    Article  Google Scholar 

  34. Dandliker R, Thalmann R, Prongue D (1988) Two-wavelength laser interferometry using superheterodyne detection. Opt Lett 13(5):339–341

    Article  Google Scholar 

  35. Stone JA, Stejskal A, Howard L (1999) Absolute interferometry with a 670-nm external cavity diode laser. Appl Opt 38(28):5981–5994

    Article  Google Scholar 

  36. Meiners-Hagen K, Schodel R, Pollinger F, Abou-Zeid A (2009) Multi-wavelength interferometry for length measurements using diode lasers. Meas Sci Rev 9(3):16–26

    Google Scholar 

  37. Jones DJ, Diddams SA, Ranka JK, Stentz A, Windeler RW, Hall JL, Cundiff ST (2000) Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466):635–639

    Article  Google Scholar 

  38. Diddams SA, Jones DJ, Ye J, Cundiff ST, Hall JL, Ranka JK, Windeler RS, Holzwarth R, Udem T, Hansch T-W (2000) Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys Rev Lett 84(22):5102–5105

    Article  Google Scholar 

  39. Udem T, Holzwarth R, Hansch TW (2003) Optical frequency metrology. Nature 416(6877):233–237

    Article  Google Scholar 

  40. Cundiff ST, Ye J (2003) Colloquium: femtosecond optical frequency combs. Rev Mod Phys 75(1):325–342

    Article  Google Scholar 

  41. Kim S-W (2009) Combs rule. Nat Photon 3(6):313–314

    Article  Google Scholar 

  42. Newbury NR (2011) Searching for applications with a fine-tooth comb. Nat Photonics 5(4):186–188

    Article  Google Scholar 

  43. Minoshima K, Matsumoto H (2000) High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl Opt 39(30):5512–5517

    Article  Google Scholar 

  44. Doloca NR, Meiners-Hagen K, Wdeed M, Pollinger F, Abou-Zeid A (2010) Absolute distance measurement system using a femtosecond laser as a modulator. Meas Sci Technol 21(11):115302

    Article  Google Scholar 

  45. Jang Y-S, Lee K, Han S, Lee J, Kim Y-J, Kim S-W (2014) Absolute distance measurement with extension of nonambiguity range using the frequency comb of a femtosecond laser. Opt Eng 53(12):122403

    Article  Google Scholar 

  46. Jin J, Kim Y-J, Kim Y, Kim S-W, Kang C-S (2006) Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt Express 14(13):5968–5974

    Article  Google Scholar 

  47. Hyun S, Kim Y-J, Kim Y, Jin J, Kim S-W (2009) Absolute length measurement with the frequency comb of a femtosecond laser. Meas Sci Technol 20(9):095302

    Article  Google Scholar 

  48. Salvadé Y, Schuhler N, Lévêque S, Floch SL (2008) High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source. Appl Opt 47(14):2715–2720

    Article  Google Scholar 

  49. Wang G, Jang Y-S, Hyun S, Chun BJ, Kang HJ, Yan S, Kim S-W, Kim Y-J (2015) Absolute positioning by multi-wavelength interferometry referenced to the frequency comb of a femtosecond laser. Opt Express 23(7):9121–9129

    Article  Google Scholar 

  50. Jang Y-S, Wang G, Hyun S, Kang HJ, Chun BJ, Kim Y-J, Kim S-W (2016) Comb-referenced laser distance interferometer for industrial nanotechnology. Sci Rep 6:31770

    Article  Google Scholar 

  51. Joo K-N, Kim S-W (2006) Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt Express 14(13):5954–5960

    Article  Google Scholar 

  52. Joo K-N, Kim Y, Kim S-W (2008) Distance measurements by combined method based on a femtosecond pulse laser. Opt Express 16(24):19799–19806

    Article  Google Scholar 

  53. van den Berg SA, Persijn ST, Kok GJP, Zeitouny MG, Bhattacharya N (2012) Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys Rev Lett 108(18):183901

    Article  Google Scholar 

  54. van den Berg SA, van Eldik S, Bhattacharya N (2015) Mode-resolved frequency comb interferometry for high-accuracy long distance measurement. Sci Rep 5:14461

    Article  Google Scholar 

  55. Ye J (2004) Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt Lett 29(10):1153–1155

    Article  Google Scholar 

  56. Lee J, Kim Y-J, Lee K, Lee S, Kim S-W (2010) Time-of-flight measurement using femtosecond light pulses. Nat Photon 4(10):716–720

    Article  Google Scholar 

  57. Lee J, Lee K, Lee S, Kim S-W, Kim Y-J (2012) High precision laser ranging by time-of-flight measurement of femtosecond pulses. Meas Sci Technol 23(6):065203

    Article  Google Scholar 

  58. Shi H, Song Y, Liang F, Xu L, Hu M, Wang C (2015) Effect of timing jitter on time-of-flight distance measurements using dual femtosecond lasers. Opt Express 23(11):14057–14069

    Article  Google Scholar 

  59. Han S, Kim Y-J, Kim S-W (2015) Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt Express 23(20):25874–25882

    Article  Google Scholar 

  60. Coddington I, Swann WC, Nenadovic L, Newbury NR (2009) Rapid and precise absolute distance measurements at long range. Nat Photon 3(6):351–356

    Article  Google Scholar 

  61. Liu T-A, Newbury NR, Coddington I (2011) Sub-micron absolute distance measurements in sub-milisecond times with dual free-running femtosecond Er fiber-lasers. Opt Express 19(19):18501–18509

    Article  Google Scholar 

  62. Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S-W, Kim Y-J (2013) Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength. Meas Sci Technol 24(4):045201

    Article  Google Scholar 

  63. Zhang H, Wei H, Wu X, Yang H, Li Y (2014) Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt Express 22(6):6597–6604

    Article  Google Scholar 

  64. Wu G, Xiong S, Ni K, Zhu Z, Zhou Q (2015) Parameter optimization of a dual-comb ranging system by using a numerical simulation method. Opt Express 23(25):32044–32053

    Article  Google Scholar 

  65. Edlen B (1966) The refractive index of air. Metrologia 2(2):71–80

    Article  Google Scholar 

  66. Birch KP, Downs MJ (1993) An updated Edlen equation for the refractive index of air. Metrologia 30(3):155–162

    Article  Google Scholar 

  67. Ciddor PE (1996) Refractive index of air: new equations for the visible and near infrared. Appl Opt 35(9):1566–1573

    Article  Google Scholar 

  68. Jang Y-S, Kim S-W (2017) Compensation of the refractive index of air in laser interferometer for distance measurement: a review. Int J Precis Eng Manuf 18(12):1881–1890

    Article  Google Scholar 

  69. Takamoto M, Hong FL, Higashi R, Katory H (2005) An optical lattice clock. Nature 435(7040):321–324

    Article  Google Scholar 

  70. Bloom BJ, Nicholson TL, Williams JR, Campbell SL, Bishof M, Zhang X, Zhang W, Bromley SL, Ye J (2014) An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506(7486):71–75

    Article  Google Scholar 

  71. Schibli TR, Kim J, Kuzucu O, Gopinath J, Tandon SN, Petrich GS, Kolodziejski LA, Fujimoto JG, Ippen EP, Kärtner FX (2003) Attosecond active synchronization of passively mode-locked lasers using balanced cross correlation. Opt Lett 28(11):947–949

    Article  Google Scholar 

  72. Kim J, Chen J, Zhang Z, Wong FNC, Kärtner FX, Loehl F, Schlarb H (2007) Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator. Opt Lett 32(9):1044–1046

    Article  Google Scholar 

  73. Kim J, Cox JA, Chen J, Kartner FX (2008) Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat Photonics 2(12):733–736

    Article  Google Scholar 

  74. Lee J, Lee K, Jang Y-S, Jang H, Han S, Lee S-H, Kang K-I, Lim C-W, Kim Y-J, Kim S-W (2014) Testing of a femtosecond pulse laser in outer space. Sci Rep 4:5134

    Article  Google Scholar 

  75. Jang Y-S, Lee J, Kim S, Lee K, Han S, Kim Y-J, Kim S-W (2014) Space radiation test of saturable absorber for femtosecond laser. Opt Lett 39(10):2831–2834

    Article  Google Scholar 

  76. Buchs G, Kundermann S, Portuondo-Campa E, Lecomte S (2015) Radiation hard mode-locked laser suitable as a spaceborne frequency comb. Opt Express 23(8):9890–9900

    Article  Google Scholar 

  77. Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hulsing T, Hänsch T, Holzwarth R (2016) Space-borne frequency comb metrology. Optica 3(12):1381–1387

    Article  Google Scholar 

  78. White N (2000) X-ray astronomy—imaging black hole. Nature 407(6801):146–147

    Article  Google Scholar 

  79. Fridlund CVM (2000) Darwin—the infrared space interferometry mission. ESA bulletin 103(3):20–25

    Google Scholar 

  80. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Geosci Remote Sens 45(11):3317–3341

    Article  Google Scholar 

  81. Seto N, Kawamura S, Nakamura T (2001) Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. Phys Rev Lett 87(22):221103

    Article  Google Scholar 

  82. Danzmann K, Rudiger L (2003) LISA technology—concept, status, prospects. Class Quantum Gravity 20(10):S1

    Article  MATH  Google Scholar 

  83. Hughes EB, Wilson A, Peggs GN (2000) Design of a high-accuracy CMM based on multi-lateration techniques. CIRP Ann Manuf Technol 49(1):391–394

    Article  Google Scholar 

  84. Muralikrishnan B, Phillips S, Sawyer D (2016) Laser trackers for large-scale dimensional metrology: a review. Precis Eng 44:13–28

    Article  Google Scholar 

  85. Mayr J, Jedrzejewski J, Uhlmann E, Donmez M, Knapp W, Härtig F, Wendt K, Moriwaki T, Shore P, Schmitt R, Brecher C, Würz T, Wegener K (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of the Republic of Korea (NRF-2012R1A3A1050386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, YS., Kim, SW. Distance Measurements Using Mode-Locked Lasers: A Review. Nanomanuf Metrol 1, 131–147 (2018). https://doi.org/10.1007/s41871-018-0017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-018-0017-8

Keywords

Navigation