Skip to main content
Log in

On the longtime behavior of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the longtime asymptotic behavior of a phase separation process occurring in a three-dimensional domain containing a fluid flow of given velocity. This process is modeled by a viscous convective Cahn–Hilliard system, which consists of two nonlinearly coupled second-order partial differential equations for the unknown quantities, the chemical potential and an order parameter representing the scaled density of one of the phases. In contrast to other contributions, in which zero Neumann boundary conditions were assumed for both the chemical potential and the order parameter, we consider the case of dynamic boundary conditions, which model the situation when another phase transition takes place on the boundary. The phase transition processes in the bulk and on the boundary are driven by free energy functionals that may be nondifferentiable and have derivatives only in the sense of (possibly set-valued) subdifferentials. For the resulting initial-boundary value system of Cahn–Hilliard type, general well-posedness results have been established in a recent contribution by the same authors. In the present paper, we investigate the asymptotic behavior of the solutions as times approaches infinity. More precisely, we study the \(\omega \)-limit (in a suitable topology) of every solution trajectory. Under the assumptions that the viscosity coefficients are strictly positive and that at least one of the underlying free energies is differentiable, we prove that the \(\omega \)-limit is meaningful and that all of its elements are solutions to the corresponding stationary system, where the component representing the chemical potential is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, F., Elliott, C.M., Gardiner, A., Spence, A., Stuart, A.M.: The viscous Cahn–Hilliard equation. I. Computations. Nonlinearity 8, 131–160 (1995)

    Article  MathSciNet  Google Scholar 

  2. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, London (2010)

    Book  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    MATH  Google Scholar 

  4. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I. Interfacial free energy. J. Chem. Phys. 2, 258–267 (1958)

    Article  Google Scholar 

  5. Calatroni, L., Colli, P.: Global solution to the Allen–Cahn equation with singular potentials and dynamic boundary conditions. Nonlinear Anal. 79, 12–27 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cherfils, L., Gatti, S., Miranville, A.: A variational approach to a Cahn–Hilliard model in a domain with nonpermeable walls. J. Math. Sci. (N.Y.) 189, 604–636 (2013)

    Article  MathSciNet  Google Scholar 

  7. Cherfils, L., Miranville, A., Zelik, S.: The Cahn–Hilliard equation with logarithmic potentials. Milan J. Math. 79, 561–596 (2011)

    Article  MathSciNet  Google Scholar 

  8. Cherfils, L., Petcu, M.: A numerical analysis of the Cahn–Hilliard equation with non-permeable walls. Numer. Math. 128, 518–549 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chill, R., Fašangová, E., Prüss, J.: Convergence to steady states of solutions of the Cahn–Hilliard equation with dynamic boundary conditions. Math. Nachr. 279, 1448–1462 (2006)

    Article  MathSciNet  Google Scholar 

  10. Colli, P., Fukao, T.: Cahn–Hilliard equation with dynamic boundary conditions and mass constraint on the boundary. J. Math. Anal. Appl. 429, 1190–1213 (2015)

    Article  MathSciNet  Google Scholar 

  11. Colli, P., Fukao, T.: Equation and dynamic boundary condition of Cahn–Hilliard type with singular potentials. Nonlinear Anal. 127, 413–433 (2015)

    Article  MathSciNet  Google Scholar 

  12. Colli, P., Gilardi, G., Podio-Guidugli, P., Sprekels, J.: Well-posedness and long-time behaviour for a nonstandard viscous Cahn–Hilliard system. SIAM J. Appl. Math. 71, 1849–1870 (2011)

    Article  MathSciNet  Google Scholar 

  13. Colli, P., Gilardi, G., Sprekels, J.: On the Cahn–Hilliard equation with dynamic boundary conditions and a dominating boundary potential. J. Math. Anal. Appl. 419, 972–994 (2014)

    Article  MathSciNet  Google Scholar 

  14. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions. Adv. Nonlinear Anal. 4, 311–325 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Colli, P., Gilardi, G., Sprekels, J.: A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions. Appl. Math. Optim. 73, 195–225 (2016)

    Article  MathSciNet  Google Scholar 

  16. Colli, P., Gilardi, G., Sprekels, J.: On a Cahn–Hilliard system with convection and dynamic boundary conditions. Ann. Mat. Pura Appl. (4), 1–31 (2018). https://doi.org/10.1007/s10231-018-0732-1 (see also preprint arXiv:1704.05337 [math.AP])

    Article  MathSciNet  Google Scholar 

  17. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions. SIAM J. Control Optim. 56, 1665–1691 (2018)

    Article  MathSciNet  Google Scholar 

  18. Colli, P., Gilardi, G., Sprekels, J.: Optimal velocity control of a convective Cahn–Hilliard system with double obstacles and dynamic boundary conditions: a ‘deep quench’ approach. J. Convex Anal. 1–30 (2018) (see also preprint arXiv:1709.03892 [math.AP])

  19. Colli, P., Sprekels, J.: Optimal control of an Allen–Cahn equation with singular potentials and dynamic boundary condition. SIAM J. Control Optim. 53, 213–234 (2015)

    Article  MathSciNet  Google Scholar 

  20. Elliott, C.M., Stuart, A.M.: Viscous Cahn–Hilliard equation. II. Analysis. J. Differ. Equ. 128, 387–414 (1996)

    Article  MathSciNet  Google Scholar 

  21. Elliott, C.M., Zheng, S.: On the Cahn–Hilliard equation. Arch. Ration. Mech. Anal. 96, 339–357 (1986)

    Article  MathSciNet  Google Scholar 

  22. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326–343 (1993)

    Article  MathSciNet  Google Scholar 

  23. Fukao, T., Yamazaki, N.: A boundary control problem for the equation and dynamic boundary condition of Cahn–Hilliard type. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds.) Solvability, Regularity, Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol. 22, pp. 255–280. Springer, Milan (2017)

    Chapter  Google Scholar 

  24. Gal, C.G.: A Cahn–Hilliard model in bounded domains with permeable walls. Math. Methods Appl. Sci. 29, 2009–2036 (2006)

    Article  MathSciNet  Google Scholar 

  25. Gal, C.G., Wu, H.: Asymptotic behavior of a Cahn–Hilliard equation with Wentzell boundary conditions and mass conservation. Discret. Contin. Dyn. Syst. 22, 1041–1063 (2008)

    Article  MathSciNet  Google Scholar 

  26. Gilardi, G., Miranville, A., Schimperna, G.: On the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Commun. Pure Appl. Anal. 8, 881–912 (2009)

    Article  MathSciNet  Google Scholar 

  27. Gilardi, G., Miranville, A., Schimperna, G.: Long-time behavior of the Cahn–Hilliard equation with irregular potentials and dynamic boundary conditions. Chin. Ann. Math. Ser. B 31, 679–712 (2010)

    Article  MathSciNet  Google Scholar 

  28. Gilardi, G., Rocca, E.: Well posedness and long time behaviour for a singular phase field system of conserved type. IMA J. Appl. Math. 72, 498–530 (2007)

    Article  MathSciNet  Google Scholar 

  29. Goldstein, G.R., Miranville, A., Schimperna, G.: A Cahn–Hilliard model in a domain with non-permeable walls. Physica D 240, 754–766 (2011)

    Article  MathSciNet  Google Scholar 

  30. Goldstein, G.R., Miranville, A.: A Cahn–Hilliard–Gurtin model with dynamic boundary conditions. Discret. Contin. Dyn. Syst. Ser. S 6, 387–400 (2013)

    Article  MathSciNet  Google Scholar 

  31. Gurtin, M.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1996)

    Article  MathSciNet  Google Scholar 

  32. Kubo, M.: The Cahn–Hilliard equation with time-dependent constraint. Nonlinear Anal. 75, 5672–5685 (2012)

    Article  MathSciNet  Google Scholar 

  33. Liu, C., Wu, H.: An energetic variational approach for the Cahn–Hilliard equation with dynamic boundary conditions: derivation and analysis, pp. 1–68 (2017). Preprint arXiv:1710.08318 [math.AP]

  34. Miranville, A., Zelik, S.: Robust exponential attractors for Cahn–Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

    Article  MathSciNet  Google Scholar 

  35. Novick-Cohen, A.: On the viscous Cahn–Hilliard equation. In: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986), pp. 329–342. Oxford Science Publications, Oxford University Press, New York (1988)

  36. Podio-Guidugli, P.: Models of phase segregation and diffusion of atomic species on a lattice. Ric. Mat. 55, 105–118 (2006)

    Article  MathSciNet  Google Scholar 

  37. Prüss, J., Racke, R., Zheng, S.: Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura Appl. 185(4), 627–648 (2006)

    Article  MathSciNet  Google Scholar 

  38. Racke, R., Zheng, S.: The Cahn–Hilliard equation with dynamic boundary conditions. Adv. Differ. Equ. 8, 83–110 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Simon, J.: Compact sets in the space \(L^p(0, T;\, B)\). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MATH  Google Scholar 

  40. Wu, H., Zheng, S.: Convergence to equilibrium for the Cahn–Hilliard equation with dynamic boundary conditions. J. Differ. Equ. 204, 511–531 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

PC and GG gratefully acknowledge some financial support from the MIUR-PRIN Grant 2015PA5MP7 “Calculus of Variations”, the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) and the IMATI-C.N.R. Pavia. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Colli.

Additional information

Dedicated to our friend Prof. Dr. Alexander Mielke on the occasion of his 60th birthday with best wishes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colli, P., Gilardi, G. & Sprekels, J. On the longtime behavior of a viscous Cahn–Hilliard system with convection and dynamic boundary conditions. J Elliptic Parabol Equ 4, 327–347 (2018). https://doi.org/10.1007/s41808-018-0021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-018-0021-6

Keywords

Mathematics Subject Classification

Navigation