Skip to main content
Log in

Quality of Sleep Predicts Prefrontal Cognitive Decline in Indian Collegiates

  • Original Article
  • Published:
Sleep and Vigilance Aims and scope Submit manuscript

Abstract

Purpose

To examine the association between sleep quality and pre-frontal cognition, and to assess the predictive ability of sleep quality measures for mild cognitive impairment (MCI) in collegiate population.

Methods

Forty-nine students were enrolled and categorized as with and without MCI based on the results of Montreal Cognitive Assessment (MoCA). Participants were also subjected to neuropsychological tests (PennCNP) and electrophysiological correlate of cognition-P300. Sleep quality was examined using Pittsburgh Sleep Quality Index (PSQI).

Results

Sleep quality, latency, duration, efficiency, sleep disturbance and medications used for sleep demonstrated significant correlation with cognition (p < 0.05*). At an optimal cut-off of ≥ 8 (area under curve 0.77, p < 0.001*, sensitivity 60%, specificity 85.7%), PSQI global score which measures overall sleep quality predicted occurrence of MCI [odds ratio (CI) 1.46 (1.10–1.93); p = 0.008*)] in adolescents after adjusting for various clinical covariates, such as stress, depression, anxiety and general effect.

Conclusion

Measures of sleep, such as quality, latency, duration, efficiency of sleep along with disturbances in sleep and medications used, are associated with measures of pre-frontal cognition functions. Moreover, a global score of ≥ 8 on PSQI may be considered potential predictor in the occurrence of MCI in collegiates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Manzar MD, Zannat W, Kaur M, Hussain ME. Sleep in university students across years of university education and gender influences. Int J Adolesc Med Health. 2015;27(3):341–8.

    Article  PubMed  Google Scholar 

  2. Hauri P. What can insomniacs teach us about the functions of sleep. In: The functions of sleep. 1979; pp 251–71.

  3. Walker MP. The role of sleep in cognition and emotion. Ann N Y Acad Sci. 2009;1156(1):168–97.

    Article  PubMed  Google Scholar 

  4. Goeder R, Seeck- Hirschner MA, Stingele K, Huchzermeier C, Kropp C, Palaschewski M, Aldenhoff J, Koch J. Sleep and cognition at baseline and the effects of REM sleep diminution after 1 week of antidepressive treatment in patients with depression. J Sleep Res. 2011;20(4):544–51.

    Article  Google Scholar 

  5. Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep. 2013;36(7):1027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gagnon JF, Vendette M, Postuma RB, Desjardins C, Massicotte-Marquez J, Panisset M, Montplaisir J. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Ann Neurol. 2009;66(1):39–47.

    Article  PubMed  Google Scholar 

  7. Möller A, Wiedemann G, Rohde U, Backmund H, Sonntag A. Correlates of cognitive impairment and depressive mood disorder in multiple sclerosis. Acta Psychiatr Scand. 1994;89(2):117–21.

    Article  PubMed  Google Scholar 

  8. Muzur A, Pace-Schott EF, Hobson JA. The prefrontal cortex in sleep. Trends Cogn Sci. 2002;6(11):475–81.

    Article  PubMed  Google Scholar 

  9. Harrison Y, Horne JA, Rothwell A. Prefrontal neuropsychological effects of sleep deprivation in young adults—a model for healthy aging? Sleep. 2000;23(8):1067–73.

    Article  CAS  PubMed  Google Scholar 

  10. Wu JC, Gillin JC, Buchsbaum MS, Chen P, Keator DB, Wu NK, Darnall LA, Fallon JH, Bunney WE. Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology. 2006;31(12):2783.

    Article  PubMed  Google Scholar 

  11. Horne JA. Human sleep, sleep loss and behaviour: implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry. 1993;162(3):413–9.

    Article  CAS  PubMed  Google Scholar 

  12. Crenshaw MC, Jack DE. Slow-wave sleep and waking cognitive performance among older adults with and without insomnia complaints. Physiol Behav. 1999;66(3):485–92.

    Article  CAS  PubMed  Google Scholar 

  13. Tripathi S, Taneja P, Jha SK. Training on an appetitive (delay)-conditioning task enhances oscillatory waves during sleep in the cortical and amygdalar network. Front Behav Neurosci. 2018;7(12):260.

    Article  Google Scholar 

  14. Staresina BP, Bergmann TO, Bonnefond M, Van Der Meij R, Jensen O, Deuker L, Elger CE, Axmacher N, Fell J. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nat Neurosci. 2015;18(11):1679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gildner TE, Liebert MA, Kowal P, Chatterji S, Snodgrass JJ. Associations between sleep duration, sleep quality, and cognitive test performance among older adults from six middle income countries: results from the Study on Global Ageing and Adult Health (SAGE). J Clin Sleep Med. 2014;10(06):613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–29.

    Article  PubMed  Google Scholar 

  17. Kyriazos TA. Applied psychometrics: sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology. 2018;9(08):2207.

    Article  Google Scholar 

  18. Crawford JR, Henry JD. The Depression Anxiety Stress Scales (DASS): normative data and latent structure in a large non-clinical sample. Br J Clin Psychol. 2003;42(2):111–31.

    Article  PubMed  Google Scholar 

  19. Bairwa M, Rajput M, Sachdeva S. Modified Kuppuswamy’s socioeconomic scale: social researcher should include updated income criteria, 2012. Indian J Community Med. 2013;38(3):185.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063.

    Article  CAS  PubMed  Google Scholar 

  21. Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.

    Article  CAS  PubMed  Google Scholar 

  22. Gur RC, Richard J, Hughett P, Calkins ME, Macy L, Bilker WB, Brensinger C, Gur RE. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: standardization and initial construct validation. J Neurosci Methods. 2010;187(2):254–62.

    Article  PubMed  Google Scholar 

  23. Adler CM, Sax KW, Holland SK, Schmithorst V, Rosenberg L, Strakowski SM. Changes in neuronal activation with increasing attention demand in healthy volunteers: an fMRI study. Synapse. 2001;42(4):266–72.

    Article  CAS  PubMed  Google Scholar 

  24. Baddeley A. The episodic buffer: a new component of working memory? Trends Cogn Sci. 2000;4(11):417–23.

    Article  CAS  PubMed  Google Scholar 

  25. Rossetti HC, Lacritz LH, Cullum CM, Weiner MF. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2011;77(13):1272–5.

    Article  PubMed  Google Scholar 

  26. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aseem A, Kauser H, Hussain ME. Non-action video game training ameliorates cognitive decline associated with sleep disturbance. Sleep Vigil. 2018;2(2):157–65.

    Article  Google Scholar 

  28. Jorm AF. Is depression a risk factor for dementia or cognitive decline? Gerontology. 2000;46(4):219–27.

    Article  CAS  PubMed  Google Scholar 

  29. Beaudreau SA, O’Hara R. Late-life anxiety and cognitive impairment: a review. Am J Geriatr Psychiatry. 2008;16(10):790–803.

    Article  PubMed  Google Scholar 

  30. Scott JP, McNaughton LR, Polman RC. Effects of sleep deprivation and exercise on cognitive, motor performance and mood. Physiol Behav. 2006;87(2):396–408.

    Article  CAS  PubMed  Google Scholar 

  31. Xu L, Jiang CQ, Lam TH, Liu B, Jin YL, Zhu T, Zhang WS, Cheng KK, Thomas GN. Short or long sleep duration is associated with memory impairment in older Chinese: the Guangzhou Biobank Cohort Study. Sleep. 2011;34(5):575–80.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wright KP Jr, Lowry CA, LeBourgeois MK. Circadian and wakefulness-sleep modulation of cognition in humans. Front Mol Neurosci. 2012;18(5):50.

    Google Scholar 

  33. Goel N, Rao H, Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2009;29(04):320–39.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dorrian J, Rogers NL, Dinges DF. Psychomotor vigilance performance: Neurocognitive assay sensitive to sleep loss. In: Sleep deprivation. CRC Press; 2004. p. 67–98.

    Google Scholar 

  35. Alhola P, Polo-Kantola P. Sleep deprivation: Impact on cognitive performance. Neuropsychiatric disease and treatment. 2007.

  36. Bartel P, Offermeier W, Smith F, Becker P. Attention and working memory in resident anaesthetists after night duty: group and individual effects. Occup Environ Med. 2004;61(2):167–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Acosta-peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse. 2015;69(1):15–25.

    Article  PubMed  Google Scholar 

  38. Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16(3):357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Genzel L, Kroes MC, Dresler M, Battaglia FP. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes? Trends Neurosci. 2014;37(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kondo H, Osaka N, Osaka M. Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage. 2004;23(2):670–9.

    Article  PubMed  Google Scholar 

  41. Friedman D. Cognition and aging: a highly selective overview of event-related potential (ERP) data. J Clin Exp Neuropsychol. 2003;25(5):702–20.

    Article  PubMed  Google Scholar 

  42. Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WE Jr. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry. 1999;156(8):1149–58.

    Article  CAS  PubMed  Google Scholar 

  43. Jelicic M, Bosma H, Ponds RW, Van Boxtel MP, Houx PJ, Jolles J. Subjective sleep problems in later life as predictors of cognitive decline. Report from the Maastricht Ageing Study (MAAS). Int J Geriatr Psychiatry. 2002;17(1):73–7.

    Article  PubMed  Google Scholar 

  44. Kronholm E, Sallinen M, Suutama T, Sulkava R, Era P, Partonen T. Self-reported sleep duration and cognitive functioning in the general population. J Sleep Res. 2009;18(4):436–46.

    Article  PubMed  Google Scholar 

  45. Nebes RD, Buysse DJ, Halligan EM, Houck PR, Monk TH. Self-reported sleep quality predicts poor cognitive performance in healthy older adults. J Gerontol Ser B. 2009;64(2):180–7.

    Article  Google Scholar 

  46. Lo JC, Groeger JA, Cheng GH, Dijk DJ, Chee MW. Self-reported sleep duration and cognitive performance in older adults: a systematic review and meta-analysis. Sleep Med. 2016;1(17):87–98.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mohd. Salman, Medical Electrophysiology Technician, Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia for providing us with technical help during the course of study. We would also like to acknowledge Department of Science and Technology (DST), Government of India, for providing us research grant under Cognitive Science Research Initiative (CSRI), Sanction No. DST/CSRI/2017/209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anam Aseem.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

Clearance was obtained from the Institutional Ethics Committee (IEC) of Jamia Millia Islamia (A Central University) which follows guidelines prescribed by IEC, which were in accordance with the Declaration of Helsinki, 1964.

Consent to Participate

All the participants signed a written informed consent form before the commencement of the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseem, A., Bhati, P., Chaudhry, N. et al. Quality of Sleep Predicts Prefrontal Cognitive Decline in Indian Collegiates. Sleep Vigilance 5, 127–134 (2021). https://doi.org/10.1007/s41782-021-00136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41782-021-00136-6

Keywords

Navigation