Skip to main content
Log in

Synthesis and characterization of zinc oxide decorated on graphene oxide: morphology selection and biological assessment

  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract 

The morphology of nanomaterials as one of the physicochemical parameters plays a crucial role in determining the outcomes of interactions at the bio-nano interface. This work focuses on the biological features of graphene oxide (GO) decorated with zinc oxide (ZnO) (GO@ZnO) due to its outstanding properties with high potential to use in the biomedical field. GO@ZnO are synthesized, and the effect of seeding, temperature, and pH on the morphology of ZnO on GO substrate is evaluated by field emission scanning electron microscopy and X-ray diffraction technique. GO decorated with platelet and rod-like ZnO as GO@PZnO and GO@RZnO, respectively, are selected to investigate in vitro cytocompatibility, antibacterial activity, and interaction with human serum albumin (HSA) to put out the role of morphology. The antibacterial activity assays confirm the higher efficacy of GO@PZnO compared to GO@RZnO. However, the binding assessment indicates that HSA interaction is directly affected by the morphology of GO@ZnO so that the GO@RZnO-HSA complex is more stable than the GO@PZnO-HSA complex with a higher binding constant. Our results provide insight into how the morphology of GO@ZnO affects cell behavior, antibacterial activity, and protein complex formation. These findings are helpful to the development of GO@ZnO for future biomedical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Singha, Th.A., Sharma, A., Tejwan, N., et al.: A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interface Sci. 295, 102495 (2021)

    Google Scholar 

  2. Hasan, M., Altaf, M., Zafar, A., et al.: Bioinspired synthesis of zinc oxide nano-flowers: a surface enhanced antibacterial and harvesting efficiency. Mater. Sci. Eng. C. 119, 111280 (2021)

    CAS  Google Scholar 

  3. Jiang, J., Pi, J., Cai, J.: The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl . 1062562 (2018)

  4. Sruthi, S., Ashtami, J., Mohanan, P.V.: Biomedical application and hidden toxicity of zinc oxide nanoparticles. Mater. Today Chem. 10, 175–186 (2018)

    CAS  Google Scholar 

  5. Ancona, A., Dumontel, B., Garino, N., et al.: Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomaterials 8(3), 143 (2018)

    Google Scholar 

  6. Rasmussen, J.W., Martinez, E., Louka, P., et al.: Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 7(9), 1063–1077 (2010)

    CAS  Google Scholar 

  7. Shu, Z., Zhang, Y., Yang, Q.: Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Res. Lett. 12, 135 (2017)

    Google Scholar 

  8. Shuai, C., Peng, B., Feng, P., et al.: In situ synthesis of hydroxyapatite nanorods on graphene oxide nanosheets and their reinforcement in biopolymer scaffold. J. Adv. Res. 35, 13–24 (2022)

    CAS  Google Scholar 

  9. El-Shafai, N., El-Khouly, M.E., El-Kemary, M., et al.: Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv. 9, 3704 (2019)

    CAS  Google Scholar 

  10. Naseem, T., Abdin, Zain.ul., Waseem, M., et al.: Reduced graphene oxide/zinc oxide nanocomposite: from synthesis to its application for wastewater purification and antibacterial activity. Inorg. Organomet. Polym. Mater. 30, 3907–3919 (2020)

  11. Liu, Sh., Zeng, T.H., Hofmann, M., et al.: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano. 5(9), 6971–6980 (2011)

    CAS  Google Scholar 

  12. Rajeswari, R., Gurumallesh Prabu, H.: Palladium-decorated reduced graphene oxide/zinc oxide nanocomposite for enhanced antimicrobial, antioxidant and cytotoxicity activities. Process Biochem. 93, 36–47 (2020)

    CAS  Google Scholar 

  13. Mbuyisa, P.N., Ndwandwe, O.M., Cepek, C.: Controlled growth of zinc oxide nanorods synthesised by the hydrothermal method. Thin Solid Films 578, 7–10 (2015)

    CAS  Google Scholar 

  14. chandraiahgari, C.R., De Bellis, G., balijepalli, S.K., et al.: Control of size and density of ZnO-nanorods grown onto graphene nanoplatelets in aqueous suspensions. RSC Adv. 6, 83217–83225 (2016)

  15. Nairi, V., Medda, S., Piludu, M., et al.: Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers. Chem. Eng. J. 340, 42–50 (2018)

    CAS  Google Scholar 

  16. Kurtz-Chalot, A., Villiers, Ch., Pourchez, J., et al.: Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Mater. Sci. Eng. C. 75, 16–24 (2017)

    CAS  Google Scholar 

  17. Visalakshan, R.M., García, L.E.G., Benzigar, M.R., et al.: The influence of nanoparticle shape on protein corona formation. Small 16, 2000285 (2020)

    Google Scholar 

  18. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., et al.: In vivo formation of protein corona on gold nanoparticles: The effect of their size and shape. Nanoscale 10(3), 1256–1264 (2018)

    Google Scholar 

  19. Carnovale, C., Bryant, G., Shukla, R., et al.: Impact of nanogold morphology on interactions with human serum. Phys. Chem. Chem. Phys. 20, 29558 (2018)

    CAS  Google Scholar 

  20. Baimanov, D., Cai, R., Chen, Ch., et al.: Understanding the chemical nature of nanoparticle−protein interactions. Bioconjug. Chem. 30, 1923–1937 (2019)

    CAS  Google Scholar 

  21. Piella, J., Bastús, N.G., Puntes, V.: Size-dependent protein–nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona. Bioconjug. Chem. 28, 88–97 (2016)

    Google Scholar 

  22. Suvarna, M., Dyawanapelly, S., Kansara, B., et al.: Understanding the stability of nanoparticle–protein interactions: effect of particle size on adsorption, conformation and thermodynamic properties of serum albumin proteins. ACS Appl. Nano Mater. 1(10), 5524–5535 (2018)

    CAS  Google Scholar 

  23. Duan, Y., Liu, Y., Shen, W., et al.: Fluorescamine labeling for assessment of protein conformational change and binding affinity in protein−nanoparticle interaction. Anal. Chem. 89(22), 12160–12167 (2017)

    CAS  Google Scholar 

  24. Rabbani, G., Ahn, S.N.: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int. J. Biol. Macromol. 193(A), 948–955 (2021)

    CAS  Google Scholar 

  25. Naskar, A., Khan, H., Bera, S., et al.: Soft chemical synthesis, characterization and interaction of ZnO graphene nanocomposite with bovine serum albumin protein. J. Mol. Liq. 237, 113–119 (2017)

    CAS  Google Scholar 

  26. Liang, Ch.Y., Pan, J., Bai, A.M., et al.: Insights into the interaction of human serum albumin and carbon dots: Hydrothermal synthesis and biophysical study. Int. J. Biol. Macromol. 149, 1118–1129 (2020)

    CAS  Google Scholar 

  27. Wang, Y.-W., Cao, A., Jiang, Y., et al.: Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria. ACS Appl. Mater. Interfaces 6, 2791–2798 (2014)

    CAS  Google Scholar 

  28. Rajeswari, R., Gurumallesh Prabu, H.: Synthesis characterization, antimicrobial, antioxidant, and cytotoxic activities of ZnO nanorods on reduced graphene oxide. Inorg. Organomet. Polym. Mater. 28, 679–693 (2018)

    CAS  Google Scholar 

  29. Hou, Y., Lv, Sh., Liu, L., et al.: High-quality preparation of graphene oxide via the Hummers’ method: understanding the roles of the intercalator, oxidant, and graphite particle size. Ceram. Int. 46(2), 2392–2402 (2020)

    CAS  Google Scholar 

  30. Kohzadi, Sh., Najmoddin, N., Baharifar, H., Shabani, M.: Functionalized SPION immobilized on graphene-oxide: anticancer and antiviral study. Diam. Relat. Mater. 127, 109149 (2022)

    CAS  Google Scholar 

  31. Albert, E.L., Sajiman, M.B., Abdullah, Ch.ACh.: Incorporation of magnetic nanoparticle to graphene oxide via simple emulsion method and their cytotoxicity. Appl. Nanosci. 9, 43–48 (2019)

    CAS  Google Scholar 

  32. Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Google Scholar 

  33. Jang, J.M., Kim, S.D., Choi, H.M., et al.: Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process. Mater. Chem. Phys. 113(1), 389–394 (2009)

    CAS  Google Scholar 

  34. Chang, Y., Yang, S.T., Liu, J.H., et al.: In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200, 201–210 (2011)

    CAS  Google Scholar 

  35. Shaheen, F., Aziz, M.H., Fatima, M., et al.: In vitro cytotoxicity and morphological assessments of GO-ZnO against the MCF-7 cells: determination of singlet oxygen by chemical trapping. Nanomaterials 8, 539 (2018)

    Google Scholar 

  36. Hajzamani, D., Shokrollahi, P., Najmoddin, N., Shokrolahi, F.: Effect of engineered PLGA-gelatin-chitosan/PLGA-gelatin/PLGA-gelatin-graphene three-layer scaffold on adhesion/proliferation of HUVECs. Polym. Adv. Technol. 31(9), 1896–1910 (2020)

    CAS  Google Scholar 

  37. Zhang, X., Shi, H., Liu, E., et al.: Preparation of polycrystalline ZnO nanoparticles loaded onto graphene oxide and their antibacterial properties. Mater. Today Commun. 28, 102531 (2021)

    CAS  Google Scholar 

  38. Zhong, L., Liu, H., Samal, M., et al.: Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. J. Photochem. Photobiol. B. Biol. 183, 293–301 (2018)

    CAS  Google Scholar 

  39. Chowdhuri, A. R., Tripathy, S., Chandra, S., et al.: ZnO decorated chitosan-graphene oxide nanocomposite shows significantly enhanced antimicrobial activity with ROS generation. RSC Adv. 5, 49420–49428 (2015)

  40. Zhang, W., Yang, Y., Ziemann, E., et al.: One-step sonochemical synthesis of a reduced graphene oxide- ZnO nanocomposite with antibacterial and antibiofouling properties. Environ. Sci. Nano. 6, 3080–3090 (2019)

    CAS  Google Scholar 

  41. Saha, R.K., Debanath, M.K., Paul, B., et al.: Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci. Rep. 10, 2598 (2021)

    Google Scholar 

  42. Anand, K., Rajamanikandan, R., Selva Sharma, A., et al.: Human serum albumin interaction, in silico and anticancer evaluation of pine-gold nanoparticles. Process Biochem. 89, 98–109 (2020)

    CAS  Google Scholar 

  43. Siddiq, A.M., Murugan, D., Srivastava, R., et al.: Influence of pH on interaction of silver nanoparticles- protein: Analyses by spectroscopic and thermodynamic ideology. Colloids Surf. B: Biointerfaces 184, 110524 (2019)

    CAS  Google Scholar 

  44. Talebian, N., Amininezhad, S.M., Doudi, M.: Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B Biol. 120, 66–73 (2013)

    CAS  Google Scholar 

  45. Shafaei, Z., Abazari, O., Divsalar, A., et al.: Effect of a synthesized amyl-glycine1, 10-phenanthroline platinum nitrate on structure and stability of human blood carrier protein, albumin: spectroscopic and modeling approaches. J. Fluoresc. 27, 1829–1838 (2017)

    CAS  Google Scholar 

  46. Ghalandari, B., Asadollahi, K., Shakerizadeh, A., et al.: Microtubule network as a potential candidate for targeting by gold nanoparticle-assisted photothermal therapy. J. Photochem. Photobiol. B Biol. 192, 131–140 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Najmeh Najmoddin: Supervision, conceptualization and writing—original draft.

Amad Hasanzadeh: Methodology, investigation, resources, and software.

Seyedeh Mansoureh Shobeiry Nejad: Methodology.

Behafarid Ghalandari: Supervision, Analysis and interpretation of data, reviewing and editing.

Corresponding authors

Correspondence to Najmeh Najmoddin or Behafarid Ghalandari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najmoddin, N., Hasanzadeh, A., Nejad, S.M.S. et al. Synthesis and characterization of zinc oxide decorated on graphene oxide: morphology selection and biological assessment. J Aust Ceram Soc 58, 1685–1700 (2022). https://doi.org/10.1007/s41779-022-00803-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00803-5

Keywords

Navigation