Skip to main content

Advertisement

Log in

High-temperature impedance and alternating current conduction mechanism of Ni0.5Zn0.5WO4 micro-crystal for electrical energy storage application

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The Ni0.5Zn0.5WO4 crystals were prepared via conventional solid-state synthesis techniques, and its phase formation with monoclinic structure (space group- P2/c) was investigated with a view to understanding its structural, morphological and dielectric properties. The phase formation and average particle size (31.38 μm) were ascertained by X-ray diffractometry and field emission scanning electron microscope techniques, respectively. The real and imaginary impedance ( Z′, Z′′),dielectric constant (ɛr), loss (δ), and ac conductivity (σac) were measured in the frequency range 100 Hz-1 MHz with high-temperature evolution (200–460 °C). The grain, grain boundary and electrode ceramic effect were well fitted with R(RQ)(RQ)(RC) resistor network model using ZSimpWin software. The Non-Debye type dipolar relaxation and NTC effect were observed with high-temperature evolution above 2000c. The dielectric constant and loses were enhances with rising of temperature and ac conductivity was fitted with well-known Jonscher power law. The conduction mechanism was explained with both NSPT and CBH model from the variation of frequency exponent (n) with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zawawi, S.M.M., Yahya, R., Hassan, A., Mahmud, H.N.M.E., Daud, M.N.: Structural and optical characterization of metal tungstates (MWO4; M=Ni, Ba, Bi) synthesized by a sucrose-templated method. Chem Cent J. 80, 1–10 (2013)

    Google Scholar 

  2. Grassmann, H., Moser, H.-G., Lorenz, E.: Scintillation properties of ZnWO4. J. Lumin. 33, 109–113 (1985)

    Article  CAS  Google Scholar 

  3. Huang, G., Zhu, Y.: Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater. Sci. Eng. B. 139, 201–208 (2007)

    Article  CAS  Google Scholar 

  4. Huang, G., Zhang, C., Zhu, Y.: ZnWO4 photocatalyst with high activity for degradation of organic contaminants. J. Alloys Compd. 432, 269–276 (2007)

    Article  CAS  Google Scholar 

  5. Yang, F., Tu, C., Wang, H., Wei, Y., You, Z., Jia, G., Li, J., Zhu, Z., Lu, X., Wang, Y.: Growth and spectroscopy of Dy3+ doped in ZnWO4 crystal. Opt. Mater. 29, 1861–1865 (2007)

    Article  CAS  Google Scholar 

  6. Lin, J., Lin, J., Zhu, Y.: Controlled synthesis of the ZnWO4 nanostructure and effects on the Photocatalytic performance. Inorg. Chem. 46, 8372–8378 (2007)

    Article  CAS  Google Scholar 

  7. Zhang, N., Chen, C., Mei, Z., Liu, X., Qu, X., Li, Y., Li, S., Qi, W., Zhang, Y., Ye, J., Roy, V.A.L.: Ma, R: monoclinic tungsten oxide with {100} facet orientation and tuned electronic band structure for enhanced photocatalytic oxidations. ACS Appl. Mater. Interfaces. 8, 10367–10374 (2016)

    Article  CAS  Google Scholar 

  8. Osotsi, M.I., Macharia, D.K., Zhu, B., Wang, Z., Shen, X., Liu, Z., Zhang, L., Chen, Z.: Synthesis of ZnWO4−x nanorods with oxygen vacancy for efficient photocatalytic degradation of tetracycline. Prog. Nat. Sci.: Materials International. 28, 408–415 (2018)

    Article  CAS  Google Scholar 

  9. Landee, C.P., Westrum, E.F.: Thermophysical measurements on transition metal tungstates II Heat capacities of antiferromagnetic nickel and cobalt tungstates. J. Chem. Thermodyn. 8, 471–491 (1976)

    Article  CAS  Google Scholar 

  10. Li, Q., Yao, F.Z., Liu, Y., Zhang, G., Wang, H., Wang, Q.: High-temperature dielectric materials for electrical energy storage. Annu. Rev. Mater. Res. 48, 219–243 (2018)

    Article  CAS  Google Scholar 

  11. Mekap, A., Das, P.R., Choudhary, R.N.P.: Dielectric and impedance spectroscopy of ZnWO4 Electroceramics. J. Electron. Mater. 43, 3527–3533 (2014)

    Article  CAS  Google Scholar 

  12. Kuzmin, A., Kalinko, A., Evarestov, R.A.: First-principles LCAO study of phonons in NiWO4.Cent. Eur. J. Phys. 9, 502–509 (2011)

    CAS  Google Scholar 

  13. Mittemeijer, E.J., Welzel, U.: The “state of the art” of the diffraction analysis of crystallite size and lattice strain. Z Kristallogr. 223, 552–560 (2008)

    Article  CAS  Google Scholar 

  14. Sinclair, D.C., West, A.R.: Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850–3856 (1989)

    Article  CAS  Google Scholar 

  15. Karmakar, S., Panda, B., Sahoo, B., Routray, K.L., Varma, S., Behera, D.: A study on optical and dielectric properties of Ni-ZnO nanocomposite. Mater. Sci. Semicond. Process. 88, 198–206 (2018)

    Article  CAS  Google Scholar 

  16. Gantassi, A., Essaidi, H., Hamed, Z.B., Gherouel, D., Boubaker, K., Colantoni, A., Monarca, D., Kouki, F., Amlouk, M., Manoubi, T.: Growth and characterization of single phase AgInS2 crystals for energy conversion application through β-In2S3 by thermal evaporation. J. Cryst. Growth. 413, 51–60 (2015)

    Article  CAS  Google Scholar 

  17. Ortega, N., Kumar, A., Bhattacharya, P., Majumder, S.B., Katiyar, R.S.: Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films. Phys. Rev. B. 77(014111), 1–10 (2008)

    Google Scholar 

  18. Karmakar, S., Varma, S., Behera, D.: Investigation of structural and electrical transport properties of nano-flower shaped NiCo2O4 supercapacitor electrode materials. J. Alloys Compd. 757, 49–59 (2018)

    Article  CAS  Google Scholar 

  19. Dult, M., Kundu, R.S., Murugavel, S., Punia, R., Kishore, N.: Conduction mechanism in bismuth silicate glasses containing titanium. Phys. B Condens. Matter. 452, 102–107 (2014)

    Article  CAS  Google Scholar 

  20. Elliot, S. R.: A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

  21. Bechir, M.B., Karoui, K., Tabellout, M., Guidara, K., Rhaiem, A.B.: Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2CuCl4. J. Appl. Phys. 115(203712), 1–7 (2014)

    Google Scholar 

  22. Keneman, S.A.: Hologram storage in arsenic Trisulfide thin films. Appl. Phys. Lett. 19, 205–207 (1971)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all faculty members and Ph.D. scholar of NIT Rourkela for providing necessary laboratory facilities whenever required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Karmakar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Behera, D. High-temperature impedance and alternating current conduction mechanism of Ni0.5Zn0.5WO4 micro-crystal for electrical energy storage application. J Aust Ceram Soc 56, 1253–1259 (2020). https://doi.org/10.1007/s41779-020-00475-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00475-z

Keywords

Navigation