Skip to main content
Log in

Fabrication of Bi0.95-xEr0.05MxO1.5-δ (M = Lu, Ho, and Gd) electrolyte for intermediate temperature solid oxide fuel cells

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

In this study, the samples of Lu2O3, Gd2O3, and Ho2O3 are firstly chosen as co-dopants with Er2O3 in order to stabilize δ phase Bi2O3 ceramics. The effects of co-dopants were investigated on phase stability and electrical conductivity of Bi0.95-xEr0.05MxO1.5-δ (M = Lu, Gd, and Ho) with x = 0.05 and 0.1 M ratio concentrations. The phase structure of samples was determined by X-ray diffraction method, the features of surface morphology are shown by scanning electron microscope, and the electrical conductivity is measured by AC impedance spectroscopy. All the samples have a face-centered cubic structure (fcc) at a lower sintering temperature (850 °C). The unit cell parameters are reduced due to the smaller dopant cations than Bi3+. The change of electrical conductivity in terms of the ionic radii, amount of doping, and temperature of the samples was investigated. The electrical conductivity increases with the radius of the doping ions. However, the increased amount of doping reduces conductivity. At the same time, the electrical conductivity of all the samples has increased with temperature. The best conductivity values are 0.489, 0.341, and 0.258 Scm−1 at 800, 700, and 600 °C, respectively for Bi0.90Er0.05Gd0.05O1.5. These values are significantly higher than the values found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gupta, V.K., Yola, M.L., Atar, N., et al.: Electrochemical studies on graphene oxide-supported metallic and bimetallic nanoparticles for fuel cell applications. J. Mol. Liq. 191, 172–176 (2014)

    Article  Google Scholar 

  2. Yola, M.L., Eren, T., Atar, N., et al.: Direct-methanol Fuel Cell Based on Functionalized Graphene Oxide with Mono-metallic and Bi-metallic Nanoparticles: Electrochemical Performances of Nanomaterials for Methanol Oxidation. Electroanalysis. 28, 570–579 (2016)

    Article  Google Scholar 

  3. Çorumlu, V., Ermiş, İ., Acer, S.D., et al.: The phase stability and conductivity of Ho2O3–Gd2O3 co-doped electrolyte for solid oxide fuel cell. J. Mater. Sci. Mater. Electron. 27, 5839–5845 (2016)

    Article  Google Scholar 

  4. Akyıldırım, O., Yüksek, H., Saral, H., et al.: Platinum nanoparticles supported on nitrogen and sulfur-doped reduced graphene oxide nanomaterial as highly active electrocatalysts for methanol oxidation. J. Mater. Sci. Mater. Electron. 27, 8559–8566 (2016)

    Article  Google Scholar 

  5. Gupta, V.K., Yola, M.L., Eren, T., Kartal, F., Çağlayan, M.O., Atar, N.: Silver, gold, and silver@ gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics. 21(8), 2285–2293 (2015)

    Article  Google Scholar 

  6. Atar, N., Eren, T., Yola, M.L., Karimi-Maleh, H., Demirdögen, B.: Magnetic iron oxide and iron oxide@gold nanoparticle anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015)

    Article  Google Scholar 

  7. Akyıldırım, O., Kotan, G., Yola, M.L., Eren, T., Atar, N.: Fabrication of bimetallic Pt/Pd nanoparticles on 2-thiolbenzimidazole functionalized reduced graphene oxide for methanol oxidation. Ionics. 22(4), 593–600 (2016)

    Article  Google Scholar 

  8. Medetalibeyoğlu, H., Manap, S., Yokuş, Ö.A., Beytur, M., Kardaş, F., Akyıldırım, O., Özkan, V., Yüksek, H., Yola, M.L., Atar, N.: Fabrication of Pt/Pd Nanoparticles/Polyoxometalate/Ionic Liquid Nanohybrid for Electrocatalytic Oxidation of Methanol J. Electrochem. Soc. 165(5), F338–F341 (2018)

    Article  Google Scholar 

  9. Ermiş, I., Sahikh, S.S., Ceramics International: Study of crystallographic, thermal and electrical properties of (Bi2O3)1-x-y(Tb4O7)x(Gd2O3)y electrolyte for SOFC application Ceram. Int. 44(15), 18776–18782 (2018)

    Google Scholar 

  10. Çolak, A.T., Eren, T., Yola, M.L., Beşli, E., Şahin, O., Atar, N.: 3D Polyoxometalate-Functionalized Graphene Quantum Dots with Mono-Metallic and Bi-Metallic Nanoparticles for Application in Direct Methanol Fuel Cells. J. Electrochem. Soc. 163(10), F1237–F1244 (2016)

    Article  Google Scholar 

  11. Levin, E.M., Roth, R.S.: Polymorphism of bismuth sesquioxide. J. Res. Natl. Bur. Stand. 68A, 189–195 (1964)

    Article  Google Scholar 

  12. Azad, A.M., Larose, S., Akbar, S.A.: Bismuth oxide-based solid electrolytes for fuel cells. J. Mater. Sci. 29, 4135–4151 (1994)

    Article  Google Scholar 

  13. Wang, S.-F., Hsu, Y.-F., Tsai, W.-C., Lu, H.-C.: The phase stability and electrical conductivity of Bi2O3 ceramics stabilized by Co-dopants. J. Power. Sources. 218, 106–112 (2012)

    Article  Google Scholar 

  14. Ahmed Laarif, F.T.: The lone pair concept and the conductivity of bismuth oxides Bi2O3. Solid State Ionics. 21, 183–193 (1986)

    Article  Google Scholar 

  15. Meng, G., Chen, C., Han, X., et al.: Conductivity of Bi2O3-based oxide ion conductors with double stabilizers. Solid State Ionics. 28–30, 533–538 (1988)

    Article  Google Scholar 

  16. Jung, D.W., Duncan, K.L., Wachsman, E.D.: Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y. Acta Mater. 58, 355–363 (2010)

    Article  Google Scholar 

  17. Shuk, P.: Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics. 89, 179–196 (1996)

    Article  Google Scholar 

  18. Verkerk, M.J., Keizer, K.: High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J. Appl. Electrochem. 10, 81–90 (1980)

    Article  Google Scholar 

  19. Arasteh, S., Maghsoudipour, A., Alizadeh, M., Nemati, A.: Effect of Y2O3 and Er2O3 co-dopants on phase stabilization of bismuth oxide. Ceram. Int. 37, 3451–3455 (2011)

    Article  Google Scholar 

  20. Watanabe, A., Sekita, M.: Stabilized δ-BiO phase in the system BiO–ErO–WO and its oxide-ion conduction. Solid State Ionics. 176, 2429–2433 (2005)

    Article  Google Scholar 

  21. Webster, N.A.S., Ling, C.D., Raston, C.L., Lincoln, F.J.: The structural and conductivity evolution of fluorite-type Bi2O3-Er2O3-PbO solid electrolytes during long-term annealing. Solid State Ionics. 179, 697–705 (2008)

    Article  Google Scholar 

  22. Sammes, N.M., Tompsett, G.A., Näfe, H., Aldinger, F.: Bismuth based oxide electrolytes structure and ionic conductivity. J. Eur. Ceram. Soc. 19, 1801–1826 (1999)

    Article  Google Scholar 

  23. Jung, D.W., Lee, K.T., Wachsman, E.D.: Dysprosium and Gadolinium Double Doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells. J. Electrochem. Soc. 163, F411–F415 (2016)

    Article  Google Scholar 

  24. Yashima, M., Ishimura, D.: Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem. Phys. Lett. 378, 395–399 (2003)

    Article  Google Scholar 

  25. Luo, J., Ball, R.J., Stevens, R.: Gadolinia doped ceria/yttria stabilised zirconia electrolytes for solid oxide fuel cell applications. J. Mater. Sci. 39, 235–240 (2004)

    Article  Google Scholar 

  26. Bauerle, J.E.: Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids. 30, 2657–2670 (1969)

    Article  Google Scholar 

  27. Le, S., Zhang, J., Zhu, X., et al.: Sintering and electrochemical performance of Y2O 3-doped barium zirconate with Bi2O3 as sintering aids. J. Power. Sources. 232, 219–223 (2013)

    Article  Google Scholar 

  28. Tan, M.Y., Tan, K.B., Zainal, Z., et al.: Subsolidus formation and impedance spectroscopy studies of materials in the (Bi2O3)1−x (Y2O3)x binary system. Ceram. Int. 38, 3403–3409 (2012)

    Article  Google Scholar 

  29. Chou, T., Der Liu, L., Wei, W.C.J.: Phase stability and electric conductivity of Er2O3-Nb2O5 co-doped Bi2O3 electrolyte. J. Eur. Ceram. Soc. 31, 3087–3094 (2011)

    Article  Google Scholar 

  30. Ozlu Torun, H., Cakar, S., Ersoy, E., Turkoglu, O.: The bulk electrical conductivity properties of δ-Bi2O3 solid electrolyte system doped with Yb2O3. J. Therm. Anal. Calorim. 122, 525–536 (2015)

    Article  Google Scholar 

  31. Jurado, J.R., Moure, C.P.D.: Preparation and electrical properties of oxygen ion conductors in the Bi2O3−Y2O3 Er2O3 systems. Solid State Ionics. 28–30, 518–523 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Ermiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermiş, İ. Fabrication of Bi0.95-xEr0.05MxO1.5-δ (M = Lu, Ho, and Gd) electrolyte for intermediate temperature solid oxide fuel cells. J Aust Ceram Soc 55, 711–718 (2019). https://doi.org/10.1007/s41779-018-0282-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-0282-4

Keywords

Navigation