Skip to main content
Log in

Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue engineering

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

3D bioprinting provides an innovative strategy to fabricate a new composite scaffold material consisted in a porous and rough structure with using polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP), and collagen as a building block for tissue engineering. We investigated the optimization of the scaffold properties based on the β-TCP concentration using 3D bioprinting method. Computer-aided drawing was applied in order to digitally design the scaffolds while instead of solid filaments, materials were prepared as a blend solution and controlled evaporation of the solvent during the bioprinting was enabled the proper solidification of the scaffolds, and they were successfully produced with well-defined porous structure. This work demonstrated the feasibility of complex PCL/β-TCP/collagen scaffolds as an alternative in the 3D bioprinting engineering to the fabrication of porous scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu, S., Liu, X., Yeung, K.W.K., Liu, C.S., Yang, X.J.: Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng. R. 80, 1–36 (2014)

    Article  Google Scholar 

  2. Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27), 5474–5491 (2005)

    Article  Google Scholar 

  3. Murphy, S.V., Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773–785 (2014)

    Article  Google Scholar 

  4. Groll, J., Boland, T., Blunk, T., Burdick, J.A., Cho, D.W., Dalton, P.D., Derby, B., Forgacs, G., Li, Q., Mironov, V.A.: Biofabrication: reappraising the definition of an evolving field. Biofabrication. 8(1), 013001 (2016)

    Article  Google Scholar 

  5. Peltola, S.M., Melchels, F.P.W., Grijpma, D.W., Kellomaki, M.: A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40(4), 268–280 (2008)

    Article  Google Scholar 

  6. Chong, E., Phan, T., Lim, I., Zhang, Y., Bay, B., Ramakrishna, S., Lim, C.: Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 3(3), 321–330 (2007)

    Article  Google Scholar 

  7. Gautam, S., Dinda, A.K., Mishra, N.C.: Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater. Sci. Eng. C. 33(3), 1228–1235 (2013)

    Article  Google Scholar 

  8. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer—polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10), 1217–1256 (2010)

    Article  Google Scholar 

  9. Holmes, R.E., Bucholz, R.W., Mooney, V.: Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J. Bone Joint Surg. Am. 68(6), 904–911 (1986)

    Article  Google Scholar 

  10. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)

    Article  Google Scholar 

  11. Lee, V.K., Dias, A., Ozturk, M.S., Chen, K., Tricomi, B., Corr, D.T., Intes, X., Dai, G.: 3D Bioprinting and 3D Imaging for Stem Cell Engineering, pp. 33–66. Springer International Publishing (2015)

  12. Jang, D., Kim, D., Moon, J.: Influence of fluid physical properties on ink-jet printability. Langmuir. 25(5), 2629–2635 (2009)

    Article  Google Scholar 

  13. Patlolla, A., Collins, G., Arinzeh, T.L.: Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater. 6(1), 90–101 (2010)

    Article  Google Scholar 

  14. Rosales-Leal, J.I., Rodríguez-Valverde, M.A., Mazzaglia, G., Ramón-Torregrosa, P.J., Rodriguez, L.D., Martinez, O.G., Vallecillo-Capilla, M., Ruiz, C., Cabrerizo-Vílchez, M.A.: Effects of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf. A Physicochem. Eng. Asp. 365(1–3), 222–229 (2010)

    Article  Google Scholar 

  15. Kim, J.Y., Yoon, J.J., Park, E.K., Kim, D.S., Kim, S.Y., Cho, D.W.: Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system. Biofabrication. 1(1), 015002 (2009)

    Article  Google Scholar 

  16. Davila, J.L., Freitas, M.S., Neto, P.I., Silveira, Z.C., Silva, J.V.L., d’Ávila, M.A.: Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. 133, 43031 (2016)

    Article  Google Scholar 

  17. Khan, S.N., Warkhedkar, R.M., Shyam, A.K.: Human bone strength evaluation through different mechanical tests. IJCET. 2, 2347–5161 (2014)

    Google Scholar 

  18. Havaldar, R., Pilli, S.C., Putti, B.B.: Insights into the effects of tensile and compressive loadings on human femur bone. Adv. Biomed. Res. 3, 101 (2014)

    Article  Google Scholar 

  19. Aydogdu, M.O., Chou, J., Altun, E., Ekren, N., Cakmak, S., Eroglu, M., Osman, A.A., Kutlu, O., Oner, E.T., Avsar, G., Oktar, F.N., Yilmaz, I., Gunduz, O.: Int. J. Polym. Mater. Polym. Biomater. (2018). https://doi.org/10.1080/00914037.2018.1443930

  20. Tavares, D.S., Castro, L.O., Soares, G.D.A., Alves, G.G., Granjeiro, J.M.: Synthesis and cytotoxicity evaluation of granular magnesium substituted β-tricalcium phosphate. J. Appl. Oral Sci. 21(1), 37–42 (2013)

    Article  Google Scholar 

  21. Kim, B.S., Choi, J.S., Kim, J.D., Yoon, H.I., Choi, Y.C., Cho, Y.W.: Human collagen isolated from adipose tissue. Biotechnol. Prog. 28(4), 973–980 (2012)

    Article  Google Scholar 

  22. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., ; Tan, K.C Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. A, 55 (2), 203–216. (2001)

    Article  Google Scholar 

  23. Melchels, F.P.W., Tonnarelli, B., Olivares, A.L., Martin, I., Lacroix, D., Feijen, J., Wendt, D.J., Grijpm, D.W.: The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding. Biomaterials. 32, 2878–2884 (2011)

    Article  Google Scholar 

Download references

Funding

This study has been founded by BAPKO, Marmara University, grant no. FEN-C-YLP-090217-0066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oguzhan Gunduz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, M.O., Mutlu, B., Kurt, M. et al. Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue engineering. J Aust Ceram Soc 55, 849–855 (2019). https://doi.org/10.1007/s41779-018-00299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-018-00299-y

Keywords

Navigation