Skip to main content

Advertisement

Log in

A top-down approach for the synthesis of nano-sized Ba-doped hydroxyapatite

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Nano-sized barium-doped hydroxyapatite (n-BaHA) was successfully synthesized by a facile one-pot mechanochemical process. The effect of dopant loading on phase composition and morphological features as well as hexagonal lattice constants was assessed to study structural evolution of the milled particles. From the XRD-Rietveld refinement, the a- and c-axis directions and unit cell volume showed an increasing trend with the increase of the dopant content. From the TEM observations, the doped nanopowders were composed of nanospheroids with an average particle size of 36 ± 2 nm. This novel top-down approach provides an outline for the future design of nanostructured bioceramics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vallet-Regí, M., Ruiz-Hernández, E.: Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater. 23, 5177–5218 (2011)

    Article  Google Scholar 

  2. Liu, H., Xu, G.W., Wang, Y.F., Zhao, H.S., Xiong, S., Wu, Y., Heng, B.C., An, C.R., Zhu, G.H., Xie, D.H.: Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1alpha autocrine/paracrine signaling loop. Biomaterials. 49, 103–112 (2015)

    Article  Google Scholar 

  3. Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013)

    Article  Google Scholar 

  4. Best, S.M., Porter, A.E., Thian, E.S., Huang, J.: Bioceramics: past, present and for the future. J Eur Ceram Soc. 28, 1319–1327 (2008)

    Article  Google Scholar 

  5. Dorozhkin, S.V.: Calcium orthophosphate bioceramics. Ceram Int. 41, 13913–13966 (2015)

    Article  Google Scholar 

  6. Šupová, M.: Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 41, 9203–9231 (2015)

    Article  Google Scholar 

  7. Shirazi, S.F.S., Gharehkhani, S., Metselaar, H.S.C., Nasiri-Tabrizi, B., Yarmand, H., Ahmadi, M., Osman, N.A.A.: Ion size, loading, and charge determine the mechanical properties, surface apatite, and cell growth of silver and tantalum doped calcium silicate. RSC Adv. 6, 190–200 (2016)

    Article  Google Scholar 

  8. Nasiri-Tabrizi, B., Pingguan-Murphy, B., Basirun, W.J., Baradaran, S.: Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders. J Ind Eng Chem. 33, 316–325 (2016)

    Article  Google Scholar 

  9. Fahami, A., Nasiri-Tabrizi, B., Beall, G.W., Pingguan-Murphy, B.: Effect of ion concentration on mechanosynthesis of carbonated chlorapatite nanopowders. Mater Lett. 146, 16–19 (2015)

    Article  Google Scholar 

  10. Aaseth, J., Boivin, G., Andersen, O.: Osteoporosis and trace elements—an overview. J Trace Elem Med Bio. 26, 149–152 (2012)

    Article  Google Scholar 

  11. Yuan, X., Zhu, B., Tong, G., Su, Y., Zhu, X.: Wet-chemical synthesis of Mg-doped hydroxyapatite nanoparticles by step reaction and ion exchange processes. J Mater Chem B. 1, 6551–6559 (2013)

    Article  Google Scholar 

  12. Miao, S., Weng, W., Cheng, K., Du, P., Shen, G., Han, G., Zhang, S.: Sol–gel preparation of Zn-doped fluoridated hydroxyapatite films. Surf Coat Tech. 198, 223–226 (2005)

    Article  Google Scholar 

  13. Alshemary, A.Z., Goh, Y., Akram, M., Razali, I.R., Kadir, M.R.A., Hussain, R.: Microwave assisted synthesis of nano sized sulphate doped hydroxyapatite. Mater Res Bull. 48, 2106–2110 (2013)

    Article  Google Scholar 

  14. Wong, W.Y., Mohd Noor, A.F.: Synthesis and sintering-wet carbonation of nano-sized carbonated hydroxyapatite. Procedia Chem. 19, 98–105 (2016)

    Article  Google Scholar 

  15. Wen, F.S., Zhao, X., Ding, H., Huo, H., Chen, J.S.: Hydrothermal synthesis and photoluminescent properties of Sb3+-doped and (Sb3+,Mn2+)-co-doped calcium hydroxyapatite. J Mater Chem. 12, 3761–3765 (2002)

    Article  Google Scholar 

  16. Fahami, A., Nasiri-Tabrizi, B., Ebrahimi-Kahrizsangi, R.: Mechanosynthesis and characterization of chlorapatite nanopowders. Mater Lett. 110, 117–121 (2013)

    Article  Google Scholar 

  17. Chen, C.W., Oakes, C.S., Byrappa, K., Riman, R.E., Brown, K., TenHuisen, K.S., Janas, V.F.: Synthesis, characterization, and dispersion properties of hydroxyapatite prepared by mechanochemical–hydrothermal methods. J Mater Chem. 14, 2425–2432 (2004)

    Article  Google Scholar 

  18. Nasiri-Tabrizi, B., Fahami, A.: Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions. J Ind Eng Chem. 20, 1236–1242 (2014)

    Article  Google Scholar 

  19. Nasiri-Tabrizi, B., Ebrahimi-Kahrizsangi, R., Basirun, W.J., Adhami, T.: Formation mechanism of ultra-high temperature nanocomposites by mechanically induced self-sustaining reactions. Syn React Inorg Met. 46, 1735–1739 (2016)

    Article  Google Scholar 

  20. Shibata, S., Doi, Y., Takezawa, Y., Wakamatsu, N., Horiguchi, T., Kamemizu, H., Moriwaki, Y., Kubo, F., Haeuchi, Y.: Self-setting apatite cement. VII. Barium-apatite as radio-opaque medium. Shika Zairyo Kikai. 8, 77–82 (1989)

    Google Scholar 

  21. Kizuki, T., Ohgaki, M., Hashimoto, K., Toda, Y., Udagawa, S., Yamashita, K.: Synthesis of apatite-type barium rare earth oxide silicates and estimation of their biocompatibility. J Ceram Soc Jpn. 109, 162–167 (2001)

    Article  Google Scholar 

  22. Alshemary, A.Z., Goh, Y.F., Akram, M., Kadir, M.R.A., Hussain, R.: Barium and fluorine doped synthetic hydroxyapatite: characterization and in-vitro bioactivity analysis. Sci Adv Mater. 7, 249–257 (2015)

    Article  Google Scholar 

  23. Landi, E., Tampieri, A., Celotti, G., Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 20, 2377–2387 (2000)

    Article  Google Scholar 

  24. Cheong, Y.L., Yam, F.K., Ooi, Y.W., Hassan, Z.: Room-temperature synthesis of nanocrystalline titanium dioxide via electrochemical anodization. Mat Sci Semicon Proc. 26, 130–136 (2014)

    Article  Google Scholar 

  25. Lee, Y.J., StePhen, P.W., Tang, Y., Li, W., Phillips, B.L., Parise, J.B., Reeder, R.J.: Arsenate substitution in hydroxylapatite: structural characterization of the Ca5(PxAs1–xO4)3OH solid solution. Am Mineral. 94, 666–675 (2009)

    Article  Google Scholar 

  26. Rodriguez-Carvajal, J.: Recent developments of the program FULLPROF, commission on powder diffraction (IUCr). Newsletter. 26, 12–19 (2001)

    Google Scholar 

  27. Terra, J., Dourado, E.R., Eon, J.G., Ellis, D.E., Gonzalez, G., Rossi, A.M.: The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Phys Chem Chem Phys. 11, 568–577 (2009)

    Article  Google Scholar 

  28. Lia, Z.Y., Lama, W.M., Yangb, C., Xub, B., Nia, G.X., Abbaha, S.A., Cheunga, K.M.C., Luka, K.D.K., Lua, W.W.: Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials. 28, 1452–1460 (2007)

    Article  Google Scholar 

  29. Lafon, J.P., Champion, E., Bernache-Assollant, D.: Processing of AB-type carbonated hydroxyapatite Ca10−x (PO4)6−x (CO3) x (OH)2−x−2y (CO3) y ceramics with controlled composition. J Eur Ceram Soc. 28, 139–147 (2008)

    Article  Google Scholar 

  30. García-Tuñón, E., Dacuña, B., Zaragoza, G., Franco, J., Guitián, F.: Cl-OH ion-exchanging process in chlorapatite (Ca5(PO4)3Clx(OH)1 - x) - a deep insight. Acta Cryst. B68, 467–479 (2012)

    Article  Google Scholar 

  31. Gibson, I.R., Bonfield, W.: Novel synthesis and characterization of an AB-type carbonate-substituted hydroxyapatite. J Biomed Mater Res. 59, 697–708 (2002)

    Article  Google Scholar 

  32. Zhao, Y., Frost, R.L., Yang, J., Martens, W.N.: Size and morphology control of gallium oxide hydroxide GaO(OH), nano- to micro-sized particles by soft-chemistry route without surfactant. J Phys Chem C. 112, 3568–3579 (2008)

    Article  Google Scholar 

  33. Vannice, M.A.: Kinetics of catalytic reactions, 1st edn. Springer (2005)

  34. Razavi-Tousi, S.S., Szpunar, J.A.: Effect of ball size on steady state of aluminum powder and efficiency of impacts during milling. Powder Tech. 284, 149–158 (2015)

    Article  Google Scholar 

  35. Balaz, P.: Mechanochemistry in nanoscience and minerals engineering, first edn. Springer, Berlin (2008)

    Google Scholar 

  36. Balema, V.P., Wiench, J.W., Pruski, M., Pecharsky, V.K.: Mechanically induced solid-state generation of phosphorus ylides and the solvent-free Wittig reaction. J Am Chem Soc. 124, 6244–6245 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (PREM center for interfaces, DMR-1205670), and the Robert A. Welch Foundation (AI-0045). The authors are also grateful to University of Malaya grant numbers: GC001C-14SBS and RP038C-15HTM, as well as Research Affairs of Islamic Azad University, Najafabad Branch, for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahman Nasiri-Tabrizi or Pardis Moslemzadeh Tehrani.

Additional information

Highlights

- Nano-sized Ba-doped HA was synthesized by a one-pot mechanochemical process.

- Structural changes during mechanical activation were investigated.

- Ba substitution increased the relative incorporation of CO3 2−.

- The doped powder was composed of nanospheroids with an average size of 36 ± 2 nm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahami, A., Nasiri-Tabrizi, B., Beall, G.W. et al. A top-down approach for the synthesis of nano-sized Ba-doped hydroxyapatite. J Aust Ceram Soc 53, 491–498 (2017). https://doi.org/10.1007/s41779-017-0059-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0059-1

Keywords

Navigation