Skip to main content

Advertisement

Log in

The Role of Bioreactor Landfill Concept in Waste Management in India

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The sustainable landfilling concept has several advantages over conventional waste management practices in addressing various socio-economic and environmental concerns. This study presents an overview of the sustainable landfilling concept and various unit processes associated with it. The waste management approaches followed in the city of Bangalore and the benefits of applying the sustainable landfilling concept are discussed. A review of the bioreactor landfills, landfill mining, and biocover systems are presented. Laboratory scale bioreactor studies on the degradation of mechanically and biologically treated waste of Bangalore city under anaerobic, aerobic, and semi-aerobic conditions are presented. The performance of bioreactor landfills and the selection of waste treatment units are greatly influenced by the municipal solid waste properties and hence are reviewed in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Malinauskaite J, Jouhara H, Czajczyńska D, Stanchev P, Katsou E, Rostkowski P, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044

    Article  Google Scholar 

  2. Waste Atlas. (2018). What a waste: an updated look into the future of solid waste management.Online. https://www.worldbank.org/en/news/immersive-story/2018/09/20/what-a-waste-an-updated-look-into-the-future-of-solid-waste-management. Accessed 17 Mar 2021

  3. Singh L, Sunderesan R, Sarin R (2014) Waste to energy generation from municipal solid waste in India. Int J ChemTech Res 6(2):1228–1232

    Google Scholar 

  4. CPCB (Central Pollutionn Control Board). (2015). Action plan for management of Municipal Solid Waste.Online. http://www.indiaenvironmentportal.org.in/files/file/action%20plan%20for%20MSW%20management.pdf. Accessed 17 Mar 2021

  5. CPCB (Central Pollutionn Control Board) (2013) Status report on municipal solid waste management.Online. http://www.cpcb.nic.in/divisionsofheadoffice/pcp/MSW_Report.pdf, http://pratham.org/images/paper_on_ragpickers.pdf. Accessed 17 Mar 2021

  6. Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Christensen TH (2014) Review of LCA studies of solid waste management systems–part I: lessons learned and perspectives. Waste Manag 34(3):573–588

    Article  Google Scholar 

  7. CPHEEO (Central Public Health and Environmental Engineering Organization) (2016) Municipal solid waste management manual. Part I: An overview. Ministry of Urban Development.Online. http://cpheeo.gov.in/upload/uploadfiles/files/Part1(1).pdf. Accessed 17 Mar 2021

  8. Williams H, Wikström F, Otterbring T, Löfgren M, Gustafsson A (2012) Reasons for household food waste with special attention to packaging. J Clean Prod 24:141–148

    Article  Google Scholar 

  9. Townsend TG, Powell J, Jain P, Xu Q, Tolaymat T, Reinhart D (2015) Sustainable practices for landfill design and operation. Springer

    Book  Google Scholar 

  10. Chanakya HN, Ramachandra TV, Shwetmala K (2009) Towards a sustainable waste management system for Bangalore. In: 1st International Conference on Solid Waste Management (IconSWM), Kolkata

  11. Lakshmikanthan P (2018) Evaluation of the engineering properties of municipal solid waste for landfill design. Dissertation. Indian Institute of Science

  12. Sughosh P (2020) Bioremediation of mechanically and biologically treated waste of Bangalore City: an experimental and numerical Study. Dissertation. Indian Institute of Science.

  13. Sughosh P, Anusree N, Babu GS (2019) Life cycle analysis as a tool to assess the sustainability of waste management practices in Bangalore city. In: Geo-Congress 2019: Geoenvironmental Engineering and Sustainability . American Society of Civil Engineers, Reston, pp 125–134

  14. Pohland FG (1995) Landfill bioreactors: historical perspective, fundamental principles and new horizons in design and operations. In: Landfill Bioreactor Design and Operation Sem. Proc., EPA/600/R-95/146, pp 9–24

  15. Reinhart DR, McCreanor PT, Townsend T (2002) The bioreactor landfill: Its status and future. Waste Manag Res 20(2):172–186

    Article  CAS  Google Scholar 

  16. Rich C, Gronow J, Voulvoulis N (2008) The potential for aeration of MSW landfills to accelerate completion. Waste Manag 28(6):1039–1048

    Article  CAS  Google Scholar 

  17. Lakshmikanthan P, Sivakumar Babu GL (2017) Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste. Waste Manag Res 35(3):285–293

    Article  CAS  Google Scholar 

  18. Sandip TM, Kanchan CK, Ashok HB (2012) Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresour Technol 110:10–17

    Article  Google Scholar 

  19. Swati M, Joseph K (2008) Settlement analysis of fresh and partially stabilised municipal solid waste in simulated controlled dumps and bioreactor landfills. Waste Manage 28(8):1355–1363

    Article  CAS  Google Scholar 

  20. Patil BS, Agnes AC, Singh DN (2017) Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag Res 35(3):301–312

    Article  CAS  Google Scholar 

  21. Barlaz MA, Ham RK, Schaefer DM, Isaacson R (1990) Methane production from municipal refuse: a review of enhancement techniques and microbial dynamics. Crit Rev Environ Sci Technol 19(6):557–584

    CAS  Google Scholar 

  22. Hegde U, Chang TC, Yang SS (2003) Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan. Chemosphere 52(8):1275–1285

    Article  CAS  Google Scholar 

  23. Mehta R, Barlaz MA, Yazdani R, Augenstein D, Bryars M, Sinderson L (2002) Refuse decomposition in the presence and absence of leachate recirculation. J Environ Eng 128(3):228–236

    Article  CAS  Google Scholar 

  24. Berge ND, Reinhart DR, Townsend TG (2005) The fate of nitrogen in bioreactor landfills. Crit Rev Environ Sci Technol 35(4):365–399

    Article  CAS  Google Scholar 

  25. Berge ND, Reinhart DR, Batarseh ES (2009) An assessment of bioreactor landfill costs and benefits. Waste Manag 29(5):1558–1567

    Article  CAS  Google Scholar 

  26. Hossain MS, Gabr MA, Barlaz MA (2003) Relationship of compressibility parameters to municipal solid waste decomposition. J Geotech Geoenviron Eng 129(12):1151–1158

    Article  Google Scholar 

  27. Inanc B, Inoue Y, Yamada M, Ono Y, Nagamori M (2007) Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues. J Hazard Mater 141(3):793–802

    Article  CAS  Google Scholar 

  28. Jun D, Yongsheng Z, Henry RK, Mei H (2007) Impacts of aeration and active sludge addition on leachate recirculation bioreactor. J Hazard Mater 147(1–2):240–248

    Article  CAS  Google Scholar 

  29. Borglin SE, Hazen TC, Oldenburg CM, Zawislanski PT (2004) Comparison of aerobic and anaerobic biotreatment of municipal solid waste. J Air Waste Manag Assoc 54(7):815–822

    Article  CAS  Google Scholar 

  30. Bilgili MS, Demir A, Ince M, Özkaya B (2007) Metal concentrations of simulated aerobic and anaerobic pilot scale landfill reactors. J Hazard Mater 145(1–2):186–194

    Article  Google Scholar 

  31. Wang Q, Matsufuji Y, Dong L, Huang Q, Hirano F, Tanaka A (2006) Research on leachate recirculation from different types of landfills. Waste Manag 26(8):815–824

    Article  Google Scholar 

  32. Erses AS, Onay TT, Yenigun O (2008) Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour Technol 99(13):5418–5426

    Article  CAS  Google Scholar 

  33. Sponza DT, Ağdağ ON (2004) Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochem 39(12):2157–2165

    Article  CAS  Google Scholar 

  34. Sang NN, Soda S, Inoue D, Sei K, Ike M (2009) Effects of intermittent and continuous aeration on accelerative stabilization and microbial population dynamics in landfill bioreactors. J Biosci Bioeng 108(4):336–343

    Article  CAS  Google Scholar 

  35. Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E (2008) Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Manag 28(8):1346–1354

    Article  CAS  Google Scholar 

  36. Ritzkowski M, Heyer KU, Stegmann R (2006) Fundamental processes and implications during in situ aeration of old landfills. Waste Manag 26(4):356–372

    Article  CAS  Google Scholar 

  37. Parrodi JCH, Höllen D, Pomberger R (2018) Potential and main technological challenges for material and energy recovery from fine fractions of landfill mining: a critical review. Detritus 3:19–29

    Google Scholar 

  38. Joseph K, Nasgendran R, Thanasekaran K, Visvanathan C, Hogland W, Kathikeyan O, Moorthy N (2008) Dumpsite rehabilitation manual. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A312624&dswid=4580. Accessed May 2003

  39. Jain P, Townsend TG, Johnson P (2013) Case study of landfill reclamation at a Florida landfill site. Waste Manag 33(1):109–116

    Article  Google Scholar 

  40. Márquez AJC, Cassettari Filho PC, Rutkowski EW, de Lima Isaac R (2019) Landfill mining as a strategic tool towards global sustainable development. J Clean Prod 226:1102–1115

    Article  Google Scholar 

  41. Kurian J, Esakku S, Palanivelu K, Selvam A (2003) Studies on landfill mining at solid waste dumpsites in India. In: Proceedings Sardinia, Vol. 3, pp. 248–255.

  42. Hogland W, Joseph K (2008) Dumpsite rehabilitation studies in Asia. In: Global Landfill Mining Conference 2008, 9 October 2008.

  43. Lechtenberg D (2008) Landfill mining in Pakistan, India and Turkey: practical experience and lessons for the future. In: Proceedings of the Global Landfill Mining Conference and Exhibition, London, 9 October 2008

  44. Ford S, Warren K, Lorton C, Smithers R, Read A, Hudgins M (2013) Feasibility and viability of landfill mining and reclamation in Scotland. Scoping Study, Final Report

  45. Ranjan MR, Ramanathan AL, Tripathi A, Jha PK (2014) Landfill mining: a case study from Ghazipur landfill area of Delhi. Int J Environ Sci 4(5):919

    CAS  Google Scholar 

  46. Patel AH (2016) Bio-mining of Old Waste-Dumps.Online. almitrapatel.com.http://www.almitrapatel.com/docs/Biomining_of_Old_WasteDumps_2016.pdf. Accessed 17 Mar 2021

  47. USEPA, CCAC, 2017. Ghazipur Landfill Rehabilitation Report.Online. http://ccacoalition.org/sites/default/files/resources/2018_Ghazipur-LandfillRehabilitation-Report_SCS-Engineers.pdf. Accessed 17 Mar 2021

  48. Nekkanti LVJK (2018) Case study on bio mining at Auto Nagar, Hyderabad. http://swachhbharaturban.gov.in/writereaddata/Bhavani_Bio.pdf. Accessed 17 Mar 2021

  49. Strange K (1998) Landfill mining. World Resource Foundation Heath House, High Street, Tonbridge, Kent TN9 (kit@ wrf. org. uk).Online. http://www.cbvcp. com/columbiasd/techpage. Accessed May 2003

  50. Somani M, Datta M, Ramana GV, Sreekrishnan TR (2019) Leachate characteristics of aged soil-like material from MSW dumps: sustainability of landfill mining. J Hazard Toxic Radioact Waste 23(4):04019014

    Article  CAS  Google Scholar 

  51. Agrawal RK (1988) A rapid technique for characterization and proximate analysis of refuse-derived fuels and its implications for thermal conversion. Waste Manag Res 6(3):271–280

    Article  CAS  Google Scholar 

  52. Blight GE, Ball JM, Blight JJ (1992) Moisture and suction in sanitary landfills in semiarid areas. J Environ Eng 118(6):865–877

    Article  CAS  Google Scholar 

  53. El-Fadel M, Findikakis AN, Leckie JO (1996) Estimating and enhancing methane yield from municipal solid waste. Hazard Waste Hazard Mater 13(3):309–331

    Article  CAS  Google Scholar 

  54. Korfiatis GP, Demetracopoulos AC, Bourodimos EL, Nawy EG (1984) Moisture transport in a solid waste column. J Environ Eng 110(4):780–796

    Article  CAS  Google Scholar 

  55. Zeiss C, Major W (1993) Moisture flow through municipal solid waste: patterns and characteristics. J Environ Syst 22(3):211–231

  56. Yuen STS, Wang QJ, Styles JR, McMahon TA (2001) Water balance comparison between a dry and a wet landfill—a full-scale experiment. J Hydrol 251(1–2):29–48

    Article  Google Scholar 

  57. Schroeder PR, Dozier TS, Zappi PA, McEnroe BM, Sjostrom JW, Peyton RL (1994) The hydrologic evaluation of landfill performance (HELP) model: Engineering documentation for version 3.

  58. Sivakumar Babu GL, Reddy KR, Chouskey SK, Kulkarni HS (2010) Prediction of long-term municipal solid waste landfill settlement using constitutive model. Pract Period Hazardous Toxic Radioact Waste Manag 14(2):139–150

    Article  CAS  Google Scholar 

  59. Sowers GF (1973) Settlement of waste disposal fills. In: Proceedings of the International Conference on soil mechanics and foundation engineering (ICSMFE)

  60. Yen BC, Scanlon B (1975) Sanitary landfill settlement rates. J Geotech Eng Div 101(5):475–487

    Article  Google Scholar 

  61. Park HI, Lee SR (1997) Long-term settlement behavior of landfills with refuse decomposition. J Solid Waste Technol Manag 24(4):159–165

    CAS  Google Scholar 

  62. Gabr MA, Hossain MS, Barlaz MA (2000) Solid waste settlement with leachate recirculation. Geotech News 18:50–55

  63. Marques ACM, Filz GM, Vilar OM (2003) Composite compressibility model for municipal solid waste. J Geotech Geoenviron Eng 129(4):372–378

    Article  Google Scholar 

  64. Landva AO, Clark JI, Weisner WR, Burwash WJ (1984) Geotechnical engineering and refuse landfills. In: Proceedings of the 6th national conference on waste management in Canada, Vancouver, BC, pp 1–37

  65. Boutwell GP, Fiore VA (1995) Settlement of clay cover on saturated garbage. In: Geoenvironment 2000: characterization, containment, remediation, and performance in environmental geotechnics. ASCE, pp 964–979

  66. Landva AO, Valsangkar AJ, Pelkey SG (2000) Lateral earth pressure at rest and compressibility of municipal solid waste. Can Geotech J 37(6):1157–1165

    Article  Google Scholar 

  67. Chen YM, Zhan TL, Wei HY, Ke H (2009) Aging and compressibility of municipal solid wastes. Waste Manag 29(1):86–95

    Article  Google Scholar 

  68. Hossain MS, Gabr MA (2009) The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste. Waste Manag 29(9):2417–2424

    Article  CAS  Google Scholar 

  69. Reddy KR, Gangathulasi J, Parakalla NS, Hettiarachchi H, Bogner JE, Lagier T (2009) Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations. Waste Manag Res 27(6):578–587

    Article  CAS  Google Scholar 

  70. Bareither CA, Benson CH, Edil TB (2012) Compression behavior of municipal solid waste: immediate compression. J Geotech Geoenviron Eng 138(9):1047–1062

    Article  CAS  Google Scholar 

  71. Powrie W, Beaven RP (1999) Hydraulic properties of household waste and implications for landfills. Proc Inst Civ Eng-Geotech Eng 137(4):235–237

    Article  Google Scholar 

  72. Chen TH, Chynoweth DP (1995) Hydraulic conductivity of compacted municipal solid waste. Bioresour Technol 51(2–3):205–212

    Article  CAS  Google Scholar 

  73. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333

    Article  Google Scholar 

  74. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5(1):95–111

    Article  CAS  Google Scholar 

  75. Hashimoto AG (1989) Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biol Wastes 28(4):247–255

    Article  CAS  Google Scholar 

  76. Neves L, Oliveira R, Alves MM (2004) Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem 39(12):2019–2024

    Article  CAS  Google Scholar 

  77. Raposo F, Borja R, Rincon B, Jimenez AM (2008) Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 32(12):1235–1244

    Article  CAS  Google Scholar 

  78. Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manag 26(4):381–388

    Article  CAS  Google Scholar 

  79. Doorn MR, Barlaz MA, Thorneloe SA (1995) Estimate of global methane emissions from landfills and open dumps. US Environmental Protection Agency, Office of Research and Development

    Google Scholar 

  80. Czepiel PM, Mosher B, Crill PM, Harriss RC (1996) Quantifying the effect of oxidation on landfill methane emissions. J Geophys Res Atmos 101(D11):16721–16729

    Article  CAS  Google Scholar 

  81. De Visscher A, Thomas D, Boeckx P, Van Cleemput O (1999) Methane oxidation in simulated landfill cover soil environments. Environ Sci Technol 33(11):1854–1859

    Article  Google Scholar 

  82. Börjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30(2):369–376

    Article  Google Scholar 

  83. Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48(3):305–312

    Article  Google Scholar 

  84. Streese J, Stegmann R (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Manag 23(7):573–580

    Article  CAS  Google Scholar 

  85. Hilger H, Humer M (2003) Biotic landfill cover treatments for mitigating methane emissions. Environ Monit Assess 84(1):71–84

    Article  CAS  Google Scholar 

  86. Wilshusen JH, Hettiaratchi JPA, Stein VB (2004) Long-term behavior of passively aerated compost methanotrophic bio-filter columns. Waste Manag 24(7):643–653

    Article  CAS  Google Scholar 

  87. Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, and nitrogen‐turnover. In: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 25 (1): 178–83

  88. Christophersen M, Linderød L, Jensen PE, Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. In: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 29(6): 1989–1997

  89. Scheutz C, Kjeldsen P (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J Environ Qual 33(1):72–79

    Article  CAS  Google Scholar 

  90. Hilger HA, Wollum AG, Barlaz MA (2000) Landfill methane oxidation response to vegetation, fertilization, and liming. In: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America 29(1): 324–334

  91. Kettunen RH, Einola JKM, Rintala JA (2006) Landfill methane oxidation in engineered soil columns at low temperature. Water Air Soil Pollut 177(1):313–334

    Article  CAS  Google Scholar 

  92. Campbell I, Robinson N (2017) Landfill methane oxidation techniques. SC160005/R. Environment Agency, Bristol

    Google Scholar 

  93. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26(1):33–46

    Article  CAS  Google Scholar 

  94. Srivastava V, Ismail SA, Singh P, Singh RP (2015) Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Bio/Technol 14(2):317–337

    Article  Google Scholar 

  95. KSPCB (Karnataka State Pollution Control Board) Annual Report. (2017). Solid waste generation status. KSPCB, Bengaluru

  96. Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley

    Google Scholar 

  97. Hashisho J, El-Fadel M (2014) Determinants of optimal aerobic bioreactor landfilling for the treatment of the organic fraction of municipal waste. Crit Rev Environ Sci Technol 44(16):1865–1891

    Article  CAS  Google Scholar 

  98. Bilgili MS, Demir A, Varank G (2012) Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate. Waste Manage Res 30(2):161–170

    Article  CAS  Google Scholar 

  99. Nikolaou A, Giannis A, Gidarakos E (2010) Comparative studies of aerobic and anaerobic treatment of MSW organic fraction in landfill bioreactors. Environ Technol 31(12):1381–1389

    Article  CAS  Google Scholar 

  100. Yazdani R, Mostafid ME, Han B, Imhoff PT, Chiu P, Augenstein D, Tchobanoglous G (2010) Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environ Sci Technol 44(16):6215–6220

    Article  CAS  Google Scholar 

  101. Shao LM, He PJ, Li GJ (2008) In situ nitrogen removal from leachate by bioreactor landfill with limited aeration. Waste Manag 28(6):1000–1007

    Article  CAS  Google Scholar 

  102. Powell J, Jain P, Kim H, Townsend T, Reinhart D (2006) Changes in landfill gas quality as a result of controlled air injection. Environ Sci Technol 40(3):1029–1034

    Article  CAS  Google Scholar 

  103. Prantl R, Tesar M, Huber-Humer M, Lechner P (2006) Changes in carbon and nitrogen pool during in situ aeration of old landfills under varying conditions. Waste Manag 26(4):373–380

    Article  CAS  Google Scholar 

  104. Cossu R, Raga R, Rossetti D (2003) The PAF model: an integrated approach for landfill sustainability. Waste Manag 23(1):37–44

    Article  CAS  Google Scholar 

  105. Sun Y, Sun X, Zhao Y (2011) Comparison of semi-aerobic and anaerobic degradation of refuse with recirculation after leachate treatment by aged refuse bioreactor. Waste Manag 31(6):1202–1209

    Article  CAS  Google Scholar 

  106. El-Fadel M (1999) Leachate recirculation effects on settlement and biodegradation rates in MSW landfills. Environ Technol 20(2):121–133

    Article  CAS  Google Scholar 

  107. Ivanova LK, Richards DJ, Smallman DJ (2008).The long-term settlement of landfill waste. In: Proceedings of the Institution of civil engineers-waste and resource management, Vol. 161, No. 3, pp 121–133. Thomas Telford Ltd.

  108. Alkaabi S, Van Geel PJ, Warith MA (2009) Effect of saline water and sludge addition on biodegradation of municipal solid waste in bioreactor landfills. Waste ManagRes 27(1):59–69

    Article  CAS  Google Scholar 

  109. Chiemchaisri C, Chiemchaisri W, Nonthapund U, Sittichoktam S (2002) Acceleration of solid waste biodegradation in tropical landfill using bioreactor landfill concept. In: 5th Asian Symposium on academic activities for waste management, pp 9–12

  110. Šan I, Onay TT (2001) Impact of various leachate recirculation regimes on municipal solid waste degradation. J Hazard Mater 87(1–3):259–271

    Article  Google Scholar 

  111. USEPA (1997) Landfill reclamation. United States Environmental Protection Agency, Solid Waste and Emergency Response (5306W), EPA530-F-97–001.Online.https://www.epa.gov/sites/production/files/2016-03/documents/land-rcl.pdf. Accessed 17 March 2021

  112. Kaartinen T, Sormunen K, Rintala J (2013) Case study on sampling, processing and characterization of landfilled municipal solid waste in the view of landfill mining. J Clean Prod 55:56–66

    Article  Google Scholar 

  113. Masi S, Caniani D, Grieco E, Lioi DS, Mancini IM (2014) Assessment of the possible reuse of MSW coming from landfill mining of old open dumpsites. Waste Manag 34(3):702–710

    Article  CAS  Google Scholar 

  114. Konrad O (2002) Modellversuch ESTRELA zur Sammlung, Trennung und Behandlung von Hausmüll in Brasilien. na.

  115. Nithikul J, Karthikeyan OP, Visvanathan C (2011) Reject management from a mechanical biological treatment plant in Bangkok, Thailand. Resour Conserv Recycl 55(4):417–422

    Article  Google Scholar 

  116. USEPA (Environmental Protection Agency) (2003) Municipal solid waste in the United States: 2001 facts and figures, USA

  117. Bareither CA, Wolfe GL, McMahon KD, Benson CH (2013) Microbial diversity and dynamics during methane production from municipal solid waste. Waste Manag 33(10):1982–1992

    Article  CAS  Google Scholar 

  118. Gifford GP, Landva AO, Hoffman VC (1990) Geotechnical considerations when planning construction on a landfill. In: Geotechnics of waste fills—Theory and practice. ASTM International

  119. Landva AO, Clark JI (1990) Geotechnics of waste fill. In: Geotechnics of waste fills—Theory and practice. ASTM International

  120. Gabr MA, Valero SN (1995) Geotechnical properties of municipal solid waste. Geotech Test J 18(2):241–251

    Article  Google Scholar 

  121. Feng SJ, Gao KW, Chen YX, Li Y, Zhang LM, Chen HX (2017) Geotechnical properties of municipal solid waste at Laogang Landfill, China. Waste Manage 63:354–365

    Article  CAS  Google Scholar 

  122. Lakshmikanthan P, Sughosh P, Babu GS (2018) Studies on characterization of mechanically biologically treated waste from Bangalore city. Indian Geotech J 48(2):293–304

    Article  Google Scholar 

  123. Jang YS, Kim YW, Lee SI (2002) Hydraulic properties and leachate level analysis of Kimpo metropolitan landfill, Korea. Waste Manag 22(3):261–267

    Article  CAS  Google Scholar 

  124. Bareither CA, Breitmeyer RJ, Benson CH, Barlaz MA, Edil TB (2012) Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance. J Geotech Geoenviron Eng 138(6):658–670

    Article  CAS  Google Scholar 

  125. Reddy KR, Hettiarachchi H, Gangathulasi J, Bogner JE (2011) Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Manag 31(11):2275–2286

    Article  CAS  Google Scholar 

  126. Zardava K (2012) Moisture retention and near saturated flow in mechanically biologically treated (MBT) waste. Dissertation. University of Southampton.

  127. Ramaiah BJ, Ramana GV, Datta M (2017) Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Manag 68:275–291

    Article  CAS  Google Scholar 

  128. Fungaroli AA, Steiner RL (1979) Investigation of sanitary landfill behavior: supplement to the final report, vol 2. US Environmental Protection Agency, Berlin

    Google Scholar 

  129. Bleiker DE, Farquhar G, McBean E (1995) Landfill settlement and the impact on site capacity and refuse hydraulic conductivity. Waste Manag Res 13(5):533–554

    Article  Google Scholar 

  130. Penmethsa KK (2007) Permeability of municipal solid waste in bioreactor landfill with degradation.

  131. Reddy KR, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T (2009) Hydraulic conductivity of MSW in landfills. J Environ Eng 135(8):677–683

    Article  CAS  Google Scholar 

  132. Oweis IS, Smith DA, Brian Ellwood R, Greene DS (1990) Hydraulic characteristics of municipal refuse. J Geotech Eng 116(4):539–553

    Article  Google Scholar 

  133. Landva AO, Pelkey SG, Valsangkar AJ (1998) Coefficient of permeability of municipal refuse. In: Proceedings of the 3rd International Congress on environmental geotechnics, Lisbon, Vol. 1, pp 63–68

  134. Jain P, Powell J, Townsend TG, Reinhart DR (2006) Estimating the hydraulic conductivity of landfilled municipal solid waste using the borehole permeameter test. J Environ Eng 132(6):645–652

    Article  CAS  Google Scholar 

  135. White J, Zardava K, Nayagum D, Powrie W (2015) Functional relationships for the estimation of van Genuchten parameter values in landfill processes models. Waste Manag 38:222–231

    Article  Google Scholar 

  136. Imam M (2003) Applications of soil mechanics principles to landfill waste. Dissertation. University of Southampton.

  137. Kazimoglu YK, McDougall JR, Pyrah IC (2005) Moisture retention and movement in landfilled waste. In: Proc. GeoProb2005 Int’l. Conf. Problematic Soils, Eastern Mediterranean University, North Cyprus. pp 307–314

  138. Kazimoglu YK, McDougall JR, Pyrah IC (2006) Unsaturated hydraulic conductivity of landfilled waste. In: Unsaturated Soils 2006, pp 1525–1534

  139. Stolz G (2007) Influence of compressibility of domestic waste on fluid conductivity. In: 2nd international Workshop Hydro-Physico-Mechanics of wastes, Southampton, UK

  140. Stoltz G, Tinet AJ, Staub MJ, Oxarango L, Gourc JP (2012) Moisture retention properties of municipal solid waste in relation to compression. J Geotech Geoenviron Eng 138(4):535–543

    Article  Google Scholar 

  141. Münnich K, Bauer J, Fricke K (2009) Laboratory tests to determine water balance parameters of MBT material. In: Proceedings 3rd International Workshop Hydro-physico-mechanics of landfills, Braunschweig, Germany

  142. Staub M (2010) Approche multi-échelle du comportement bio-mécanique d'un déchet non dangereux. Dissertation. Université Joseph-Fourier-Grenoble I

  143. Breitmeyer RJ, Benson CH (2011) Measurement of unsaturated hydraulic properties of municipal solid waste. In: Geo-frontiers 2011: advances in geotechnical engineering, pp 1433–1442

  144. Wu H, Chen T, Wang H, Lu W (2012) Field air permeability and hydraulic conductivity of landfilled municipal solid waste in China. J Environ Manag 98:15–22

    Article  Google Scholar 

  145. Gomes C, Ernesto A, Lopes ML, Moura C (2002).Sanitary landfill of Santo Tirso-municipal waste physical, chemical and mechanical properties. In: Proceedings of 4th Int. Congress on environmental geotechnics, Vol. 1, pp 255–261

  146. Siddiqui AA (2011) Biodegradation and settlement behaviour of mechanically biologically treated (MBT) waste. Dissertation. University of Southampton).

  147. Humer M, Lechner P (2001) Design of a landfill cover layer to enhance methane oxidation-results of a two year field investigation. Proc Sardinia 1:541–550

    Google Scholar 

  148. Park S, Lee I, Cho C, Sung K (2008) Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils. Chemosphere 70(6):1117–1123

    Article  CAS  Google Scholar 

  149. Philopoulos A, Ruck J, McCartney D, Felske C (2009) A laboratory-scale comparison of compost and sand—compost—perlite as methane-oxidizing biofilter media. Waste Manag Res 27(2):138–146

    Article  CAS  Google Scholar 

  150. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron Eng 140(9):04014047

    Article  Google Scholar 

  151. Cabral AR, Moreira JFV, Jugnia LB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136(8):785–793

    Article  CAS  Google Scholar 

  152. He R, Wang J, Xia FF, Mao LJ, Shen DS (2012) Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization. Chemosphere 89(6):672–679

    Article  CAS  Google Scholar 

  153. Powelson DK, Chanton J, Abichou T, Morales J (2006) Methane oxidation in water-spreading and compost biofilters. Waste Manag Res 24(6):528–536

    Article  CAS  Google Scholar 

  154. Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26(4):408–416

    Article  CAS  Google Scholar 

  155. Sughosh P, Prathima B, Arunkumar M, Anusree N, Sivakumar Babu GL (2021) Remediation of typical municipal solid waste dumpsite in Bangalore City. J Hazard Toxic Radioact Waste 25(1):04020056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Science and Engineering Research Board (SERB), Department of Science & Technology, Government of India for supporting the project on Development of methodologies for Rehabilitation of Municipal Solid Waste Dumpsites in India under IMPacting Research INnovation and Technology (IMPRINT); Grant No.IMP/2019/000442/SH, 2019. The financial support by the Ministry of Human Resources Development, India is greatly acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sughosh.

Ethics declarations

Conflicts of interest/competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sughosh, P., Sivakumar Babu, G.L. The Role of Bioreactor Landfill Concept in Waste Management in India. J Indian Inst Sci 101, 659–683 (2021). https://doi.org/10.1007/s41745-021-00248-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00248-y

Navigation