Skip to main content
Log in

Advancements in Municipal Solid Waste Landfill Cover System: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Municipal solid waste (MSW) landfill cover systems have evolved from being merely a soil cap to a multicomponent, nearly impermeable systems providing better control over infiltration and landfill gas (LFG) emissions. Recently, there has been a widespread development of alternative cover systems which addresses the shortcomings of conventional cover systems such as high construction and maintenance costs, susceptibility to damage due to desiccation cracking and freezing, and ineffective control of LFG emissions. Landfills are regarded as the third largest source of anthropogenic methane (CH4) emissions in the United States. Apart from CH4, landfills are a significant source of various other gasses such as carbon dioxide, hydrogen sulfide and several other odorous and non-methanogenic organic compounds. The modern engineered landfills typically install gas collection systems in addition to the conventional soil cover to mitigate LFG emissions. However, these systems are not always 100% efficient in capturing all the emissions. Moreover, at the older landfills where installing gas collection systems is not economical and practically feasible, the fugitive LFG emissions is a persistent problem. In this regard, alternative cover systems with wide range of cover materials have been explored to address the fugitive LFG emissions. This paper summarizes the advancements in the MSW landfill cover systems over the years, along with the core mechanisms underlying their function. Then, advancements in the alternative cover systems, including their advantages, are discussed. Finally, the research challenges/opportunities in the field of exploring alternate landfill cover systems are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

modified from West et al.73).

Figure 8:

Similar content being viewed by others

References

  1. Kaza S, Yao LC, Bhada-Tata P, Woerden FV (2018) What a waste 2.0: a global snapshot of solid waste management to 2050, International Bank for Reconstruction and Development/The World Bank, Washington DC, USA

  2. USEPA (United States Environmental Protection Agency) (2020) National overview: facts and figures on materials, wastes and recycling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials. Accessed 1 July 2020

  3. USEPA (United States Environmental Protection Agency) (2020) EPA History: Resource Conservation and Recovery Act. https://www.epa.gov/history/epa-history-resource-conservation-and-recovery-act. Accessed 1 July 2020

  4. Daniel DE (ed) (2012) Geotechnical practice for waste disposal. Springer, Berlin

    Google Scholar 

  5. Barlaz MA, Chanton JP, Green RB (2009) Controls on landfill gas collection efficiency: instantaneous and lifetime performance. J Air Waste Manag Assoc 59(12):1399–1404

    CAS  Google Scholar 

  6. Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. Wiley, Oxford

    Google Scholar 

  7. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Biotechnol 13(1):79–107

    CAS  Google Scholar 

  8. Hauser VL, Weand BL, Gill MD (2001) Natural covers for landfills and buried waste. Environ Eng 127(9):768–775

    CAS  Google Scholar 

  9. USEPA (United States Environmental Protection Agency) (1979) Design and construction of covers for solid waste landfills, Municipal Environmental Research Laboratory, Office of Research and Development, Cincinnati, Ohio. EPA-600/2-79-165. https://nepis.epa.gov/EPA/html/DLwait.htm?url=/Exe/ZyPDF.cgi/9101K3BG.PDF?Dockey=9101K3BG.PDF. Accessed 30 June 2020

  10. USEPA (United States Environmental Protection Agency) (2004) (Draft) Technical guidance for RCRA/CERCLA final covers. United States Environmental Protection Agency and Office of Solid Waste and Emergency Response, Washington DC. EPA 540-R-04-007, OSWER 9283.1-26. https://nepis.epa.gov/EPA/html/DLwait.htm?url=/Exe/ZyPDF.cgi/P10074PP.PDF?Dockey=P10074PP.PDF. Accessed 30 June 2020

  11. USEPA (United States Environmental Protection Agency) (2020) Basic information about landfills. https://www.epa.gov/landfills/basic-information-about-landfills. Accessed 10 Mar 2020

  12. Schroeder PR, Aziz NM, Lloyd CM, Zappi PA (1994) The hydrologic evaluation of landfill performance (HELP) model: user’s guide for version 3, EPA/600/R-94/168a, United States Environmental Protection Agency, Office of Research and Development, Washington, DC. https://dots.el.erdc.dren.mil/elmodels/pdf/help3doc.pdf. Accessed 30 June 2020

  13. USEPA (United States Environmental Protection Agency) (2017) Hydrologic evaluation of landfill performance (HELP) model. https://www.epa.gov/land-research/hydrologic-evaluation-landfill-performance-help-model. Accessed 18 July 2020

  14. Fayer MJ (2000) UNSAT-H version 3.0: Unsaturated soil water and heat flow model theory, user manual, and examples (No. 820201000). Pacific Northwest National Lab, Richland

    Google Scholar 

  15. Šimunek J, Van Genuchten MT, Šejna M (2012) HYDRUS: model use, calibration, and validation. Trans ASABE 55(4):1263–1274

    Google Scholar 

  16. Diersch HJ (2014) FEFLOW: Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin

    Google Scholar 

  17. ATSDR (Agency for Toxic Substances and Disease Registry) (2001) Landfill gas primer—an overview for environmental health professionals: landfill gas basics. Department of Health and Human Services, ATSDR, Division of Health Assessment and Consultation. https://www.atsdr.cdc.gov/HAC/landfill/html/ch2.html. Accessed 30 June 2020

  18. Alexander A, Burklin C, Singleton A (2005) Landfill gas emissions model (LandGEM) Version 3.02 User’s Guide, Prepared for United States Environmental Protection Agency, EPA-600/R-05/047. https://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf. Accessed 30 June 2020

  19. Nastev M, Therrien R, Lefebvre R, Gelinas P (2001) Gas production and migration in landfills and geological materials. J Contam Hydrol 52(1–4):187–211

    CAS  Google Scholar 

  20. USEPA (United States Environmental Protection Agency) (2016) Emission guidelines and compliance times for municipal solid waste landfills; final rule, Federal Register, 40 CFR Part 60, Vol. 81, No. 167, Part II. https://www.govinfo.gov/content/pkg/FR-2016-08-29/pdf/2016-17700.pdf. Accessed 30 June 2020

  21. Bonaparte R, Daniel DE, Koerner RM (2002) Assessment and recommendations for improving the performance of waste containment systems, United States Environmental Protection Agency, Washington, DC, EPA/600/R-02/099 (NTIS PB2003-103048). https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=63351. Accessed 30 June 2020

  22. Sharma HD, De A (2007) Municipal solid waste landfill settlement: postclosure perspectives. J Geotech Geoenviron Eng 133(6):619–629

    Google Scholar 

  23. Aplet JAH, Conn DH (1977) The uses of completed landfills. Conserv Recycl 1(3–4):237–246

    Google Scholar 

  24. Kumar G, Reddy KR (2020) Addressing climate change impacts and resiliency in contaminated site remediation. J Hazard Toxic Radioact Waste 24(4):04020026

    Google Scholar 

  25. Daniel DE, Koerner RM (2007) Waste containment facilities: Guidance for construction quality assurance and construction quality control of liner and cover systems. American Society of Civil Engineers ASCE Press, Virginia

    Google Scholar 

  26. Meegoda JN, Hettiarachchi H, Hettiaratchi P (2016) Landfill design and operation. Sustain Solid Waste Manag Chap 18:577–604

    Google Scholar 

  27. MOEFCC (Ministry of Environment, Forest and Climate Change) (2016) Government of India, Solid Waste Management Rules. The Gazette of India: Extraordinary [Part II-Sec i3(ii)]. http://bbmp.gov.in/documents/10180/1920333/SWM-Rules-2016.pdf/27c6b5e4-5265-4aee-bff6-451f28202cc8. Accessed 30 June 2020

  28. Holzlöhner U, Meggyes T, Seeger S (1999) Landfill technology in Germany. Land Contam Reclamat 7(2):109–119

    Google Scholar 

  29. Koerner RM, Daniel DE (1997) Final covers for solid waste landfills and abandoned dumps. Thomas Telford ASCE Press, Virginia

    Google Scholar 

  30. ITRC (Interstate Technology & Regulatory Council) (2003) Technical and regulatory guidance for design, installation, and monitoring of alternative final landfill covers, ALT-2, Washington, D.C.: ITRC, Alternative Landfill Technologies Team. http://www.itrcweb.org. Accessed 30 June 2020

  31. Dwyer SF (1998) Alternaltive landfill covers pass the test. Civil Eng 68(9):50

    Google Scholar 

  32. Kämpf M, Montenegro H (1997) On the performance of capillary barriers as landfill cover. Hydrol Earth Syst Sci 4:925–929

    Google Scholar 

  33. Morris CE, Stormont JC (1997) Capillary barriers and subtitle D covers: estimating equivalency. J Environ Eng 123(1):3–10

    CAS  Google Scholar 

  34. Berger J, Fornés LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25(4):369–373

    CAS  Google Scholar 

  35. Rahardjo H, Satyanaga A, Harnas FR, Leong EC (2016) Use of dual capillary barrier as cover system for a sanitary landfill in Singapore. Indian Geotech J 46(3):228–238

    Google Scholar 

  36. Ng CW, Coo JL, Chen ZK, Chen R (2016) Water infiltration into a new three-layer landfill cover system. J Environ Eng 142(5):04016007

    Google Scholar 

  37. Stormont JC, Anderson CE (1999) Capillary barrier effect from underlying coarser soil layer. J Geotech Geoenviron Eng 125(8):641–648

    Google Scholar 

  38. McGuire PE, Andraski BJ, Archibald RE (2009) Case study of a full-scale evapotranspiration cover. J Geotech Geoenviron Eng 135(3):316–332

    Google Scholar 

  39. Albright WH, Benson CH, Waugh WJ (2010) Water balance covers for waste containment: principles and practice. American Society of Civil Engineers, ASCE Press, Virginia, p 158

    Google Scholar 

  40. USEPA (United States Environmental Protection Agency) (2011) Fact sheet on evapotranspiration cover systems for waste containment, Office of Solid Waste and Emergency Response 5203P, EPA 542-F-11-001, February. https://www.epa.gov/sites/production/files/2015-04/documents/fs_evap_covers_epa542f11001.pdf. Accessed 10 Mar 2020

  41. Rock S, Myers B, Fiedler L (2012) Evapotranspiration (ET) covers. Int J Phytoremediat 14(sup1):1–25

    Google Scholar 

  42. Madalinski KL, Gratton DN, Weisman RJ (2003) Evapotranspiration covers: an innovative approach to remediate and close contaminated sites. Remed J Environ Cleanup Costs Technol Tech 14(1):55–67

    Google Scholar 

  43. Albright WH, Gee GW, Wilson GV, Fayer MJ (2002) Alternative cover assessment project Phase I report. Desert Research Institute, Nevada

    Google Scholar 

  44. Abichou T, Powelson D, Aitchison E, Benson C, Albright W (2005) Water balances in vegetated lysimeters at a Georgia landfill. Soil Crop Sci Soc Florida Proc 64:1–8

    Google Scholar 

  45. Barnswell KD, Dwyer DF (2011) Assessing the performance of evapotranspiration covers for municipal solid waste landfills in Northwestern Ohio. J Environ Eng 137(4):301–305

    CAS  Google Scholar 

  46. Dwyer SF (1998) Construction costs of six landfill cover designs (No. SAND98-1988). Sandia National Laboratories, Albuquerque

    Google Scholar 

  47. Dwyer SF, Reavis B, Newman G (2000) Alternative landfill cover demonstration, FY2000 Annual Data Report (No. SAND2000-2427). Sandia National Labs., Albuquerque, NM, and Livermore, CA (US). https://www.osti.gov/servlets/purl/766543. Accessed 30 June 2020

  48. USDOE (United States Department of Energy) (2000) Alternative landfill cover, innovative technology summary report (DOE/EM-0558), subsurface contaminants focus area and characterization, monitoring, and sensor, technology crosscutting program, Prepared for U.S. Department of Energy, Office of Environmental Management, Office of Science and Technology, December 2000, Demonstrated at Sandia National Laboratories Sandia, New Mexico. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2511E3CC631387EB1FAFA129571378B9?doi=10.1.1.15.653&rep=rep1&type=pdf. Accessed 30 June 2020

  49. Dwyer SF (2003) Water balance measurements and computer simulations of landfill covers, Doctoral dissertation, University of New Mexico. https://pdfs.semanticscholar.org/ee9f/f0bb0212917c3719d8c87ce6562f5ac235ab.pdf. Accessed 20 May 2020

  50. Kolstad DC, Benson CH, Edil TB (2004) Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solution. J Geotech Geoenviron Eng 130(12):1236–1249

    CAS  Google Scholar 

  51. Mackey RE, Olsta JT (2004) Performance of geosynthetic clay liners used in two landfill closures in a coastal area of Florida. In: Advances in geosynthetic clay liner technology: 2nd symposium. ASTM International

  52. Meer SR, Benson CH (2007) Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers. J Geotech Geoenviron Eng 133(5):550–563

    CAS  Google Scholar 

  53. USEPA (United States Environmental Protection Agency) (2001) Geosynthetic clay liners used in municipal solid waste landfills, EPA530-F-97-002, Solid Waste and Emergency Response (5306W). https://www.epa.gov/sites/production/files/2016-03/documents/geosyn.pdf. Accessed 30 June 2020

  54. Jo HY, Katsumi T, Benson CH, Edil TB (2001) Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J Geotech Geoenviron Eng 127(7):557–567

    Google Scholar 

  55. Egloffstein TA (2001) Natural bentonites—influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotext Geomembr 19(7):427–444

    Google Scholar 

  56. Scalia J IV, Benson CH (2011) Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers with composite barriers. J Geotech Geoenviron Eng 137(1):1–13

    Google Scholar 

  57. Jo HY, Benson CH, Shackelford CD, Lee JM, Edil TB (2005) Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J Geotech Geoenviron Eng 131(4):405–417

    CAS  Google Scholar 

  58. Koerner RM, Carson DA, Daniel DE, Bonaparte R (1997) Current status of the Cincinnati GCL test plots. Geotext Geomembr 15(4–6):313–340

    Google Scholar 

  59. Buckley J, Gates WP, Gibbs DT (2012) Forensic examination of field GCL performance in landfill capping and mining containment applications. Geotext Geomembr 33:7–14

    Google Scholar 

  60. Melchior S, Sokollek V, Berger K, Vielhaber B, Steinert B (2010) Results from 18 years of in situ performance testing of landfill cover systems in Germany. J Environ Eng 136(8):815–823

    CAS  Google Scholar 

  61. Gleason MH, Houlihan MF, Palutis JR (2001) Exposed geomembrane cover systems: technology summary. In: Proc. Sixth international conference on geosynthetics, Portland, Oregon, pp 905–918

  62. Foye K (2011) Armored geomembrane cover engineering. Int J Environ Res Public Health 8(6):2240–2264

    Google Scholar 

  63. Hullings D (2017) The benefits of exposed geomembrane covers for intermediate applications at landfills. Geotech Front:251–258

  64. Richardson GN (2000) Exposed geomembrane covers: part 1—Geomembrane stresses. GFR Mag 18(7):1–5

    Google Scholar 

  65. Perera LAK, Giroud JP, Roberts MG (2011) Exposed geomembrane cover design: a simplified design approach. Geo-Front Adv Geotech Eng:1443–1452

  66. M. Othman, Exposed geomembrane covers (EGCs) for landfills (2013) Geosyntec consultants, Presented at Solid Waste Association of North America (SWANA) SC Palmetto Chapter Spring Conference, 2013. https://www.geosyntec.com/consultants/publications/69-publications/4472-exposed-geomembrane-covers-for-landfills. Accessed 30 June 2020

  67. Ramsey B (2016) A 13-year study of an exposed green geomembrane cover. Technical note, GSE Environmental. http://www.gseworld.com/content/documents/technical-notes/A_13_year_study_of_exposed_green_geomembrane.pdf. Accessed 30 June 2020

  68. Thiel R, Purdy S, Yazdani R (2003) Case history of exposed geomembrane cover for bioreactor landfill. In: Proc. Sardinia’03, the ninth international waste management and landfilling symposium

  69. Yazdani R, Kieffer J, Akau H (2002) Full scale landfill bioreactor project at the Yolo County central landfill, Final report submitted to USEPA-Project XL, CIWMB Award Number IWM-C9050, Yolo County, Planning and Public Works Department. https://www.yolocounty.org/home/showdocument?id=1527. Accessed 30 June 2020

  70. HDR (2020) Hickory Ridge landfill: meet a landfill that’s greener than grass, Client Republic Waste Services, Inc., Atlanta, GA. https://www.hdrinc.com/portfolio/hickory-ridge-landfill. Accessed 20 May 2020

  71. Koerner GR, Koerner RM (2017) The durability of exposed geomembrane covers. Geotech Front:139–147

  72. Koerner RM, Hsuan YG, Koerner GR (2005) Geomembrane lifetime prediction: unexposed and exposed conditions. GRI White Pap:6

  73. West CK, Ayers MR, Urrutia JL (2011) Impermeable liner/synthetic turf closures for landfills. In: Proc. world of coal ash, Denver, CO, USA

  74. Ayers MR, Urrutia JL (2010) Cover system for waste sites and environmental closures, U.S. Patent No. 7,682,105. U.S. Patent and Trademark Office, Washington, DC

  75. Sanchez A, Zhu M (2019) Comparing stormwater pond design for traditional soil cover versus engineered synthetic turf cover. In: Proc. world of coal ash, St. Louis, Missouri

  76. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manag Res 26(1):33–46

    CAS  Google Scholar 

  77. USEPA (United States Environmental Protection Agency) (2019) Greenhouse gas emissions: global greenhouse gas emissions data. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data. Accessed 21 Mar 2020

  78. USEPA (United States Environmental Protection Agency) (2020) Inventory of U.S greenhouse gas emissions and sinks 1990–2018, EPA 430-R-20-002. https://www.epa.gov/sites/production/files/2020-04/documents/us-ghg-inventory-2020-main-text.pdf. Accessed 21 Mar 2020

  79. USEPA (United States Environmental Protection Agency) (2017) Greenhouse gas emissions: Understanding global warming potentials. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials. Accessed 28 July 2020

  80. IPCC, Climate Change 2013 (2013) The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  81. USEPA (United States Environmental Protection Agency) (2020) Global Methane Initiative: greenhouse gas emissions: global methane emissions and mitigation opportunities. https://www.globalmethane.org/documents/gmi-mitigation-factsheet.pdf. Accessed 21 Mar 2020

  82. Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38(18):4891–4899

    CAS  Google Scholar 

  83. Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graff C, Moreau-Le Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26(5):516–525

    CAS  Google Scholar 

  84. Bogner J, Spokas K, Burton E, Sweeney R, Corona V (1995) Landfills as atmospheric methane sources and sinks. Chemosphere 31(9):4119–4130

    CAS  Google Scholar 

  85. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Mol Biol Rev 60(2):439–471

    CAS  Google Scholar 

  86. Born M, Dörr H, Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus B 42(1):2–8

    Google Scholar 

  87. Steudler PA, Jones RD, Castro MS, Melillo JM, Lewis DL (1996) Microbial controls of methane oxidation in temperate forest and agricultural soils Microbiology of Atmospheric Trace Gases. Springer, Berlin, pp 69–84

    Google Scholar 

  88. Scheutz C, Mosbæk H, Kjeldsen P (2004) Attenuation of methane and volatile organic compounds in landfill soil covers. J Environ Qual 33(1):61–71

    CAS  Google Scholar 

  89. Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56(11):3405–3411

    CAS  Google Scholar 

  90. Kightley D, Nedwell DB, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61(2):592–601

    CAS  Google Scholar 

  91. Bogner JE, Spokas KA, Burton EA (1997) Kinetics of methane oxidation in a landfill cover soil: temporal variations, a whole-landfill oxidation experiment, and modeling of net CH4 emissions. Environ Sci Technol 31(9):2504–2514

    CAS  Google Scholar 

  92. Scheutz C, Kjeldsen P (2004) Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. J Environ Qual 33(1):72–79

    CAS  Google Scholar 

  93. Reddy KR, Rai RK, Green SJ, Chetri JK (2019) Effect of temperature on methane oxidation and community composition in landfill cover soil. J Ind Microbiol Biot 46(9–10):1283–1295

    CAS  Google Scholar 

  94. Reddy KR, Yargicoglu EN, Yue D, Yaghoubi P (2014) Enhanced microbial methane oxidation in landfill cover soil amended with biochar. J Geotech Geoenviron 140(9):04014047

    Google Scholar 

  95. Bowman J (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae. The prokaryotes 5:266–289

    Google Scholar 

  96. Bürgmann H (2011) Methane oxidation (aerobic). In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Encycl. Earth Sci. Ser. Springer, Dordrecht

    Google Scholar 

  97. Dedysh SN, Dunfield PF (2011) Facultative and obligate methanotrophs: how to identify and differentiate them. Method Enzymol 495:31–44

    CAS  Google Scholar 

  98. Yargicoglu EN, Reddy KR (2017) Microbial abundance and activity in biochar-amended landfill cover soils: evidence from large-scale column and field experiments. J Environ Eng 143(9):04017058

    Google Scholar 

  99. Reddy KR, Rai RK, Green SJ, Chetri JK (2020) Effect of pH on methane oxidation and community composition in landfill cover soil. Environ Eng 146(6):04020037

    CAS  Google Scholar 

  100. Majdinasab A, Yuan Q (2017) Performance of the biotic systems for reducing methane emissions from landfill sites: a review. Ecol Eng 104:116–130

    Google Scholar 

  101. Strong PJ, Karthikeyan OP, Zhu J, Clarke W, Wu W (2017) Methanotrophs: methane mitigation, denitrification and bioremediation. Agro-Environmental Sustainability. Springer, Cham, pp 19–40

    Google Scholar 

  102. Huber-Humer M (2004) International research into landfill gas emissions and mitigation strategies—IWWG working group" CLEAR". Waste Manag (New York, NY) 24(4):425–427

    Google Scholar 

  103. Humer M, Lechner PP (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17(6):443–452

    CAS  Google Scholar 

  104. Ménard C, Ramirez AA, Nikiema J, Heitz M (2012) Biofiltration of methane and trace gases from landfills: a review. Environ Rev 20(1):40–53

    Google Scholar 

  105. Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag Res 27(5):409–455

    CAS  Google Scholar 

  106. Dever SA, Swarbrick GE, Stuetz RM (2007) Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Manag 27(2):277–286

    CAS  Google Scholar 

  107. Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag 23(7):609–619

    CAS  Google Scholar 

  108. Gebert J, Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag 26(4):399–407

    CAS  Google Scholar 

  109. Powelson DK, Chanton J, Abichou T, Morales J (2006) Methane oxidation in water-spreading and compost biofilters. Waste Manag Res 24(6):528–536

    CAS  Google Scholar 

  110. Abichou T, Yuan L, Chanton J, Morales J (2011) Mitigating methane emissions from passive landfill vents: a viable option for older closed landfills. Int J Environ Eng 3(3–4):284–297

    Google Scholar 

  111. Dever SA, Swarbrick GE, Stuetz RM (2011) Passive drainage and biofiltration of landfill gas: results of Australian field trial. Waste Manag 31(5):1029–1048

    CAS  Google Scholar 

  112. Scheutz C, Fredenslund AM, Chanton J, Pedersen GB, Kjeldsen P (2011) Mitigation of methane emission from Fakse landfill using a biowindow system. Waste Manag 31(5):1018–1028

    CAS  Google Scholar 

  113. Huber-Humer M, Hrad M, Schloffer K, Kammerer G (2017) Implementation of biowindows for degasification of an older municipal solid waste landfill after removal of the active gas extraction system. In: Proc. sixteenth international waste management and landfill symposium, S. Margherita di Pula, Cagliari, Italy, CISA Publisher, Italy

  114. Bogner JE, Chanton JP, Blake D, Abichou T, Powelson D (2010) Effectiveness of a Florida landfill biocover for reduction of CH4 and NMHC emissions. Environ Sci Technol 44(4):1197–1203

    CAS  Google Scholar 

  115. Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S, Bogner J (2007) Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manag 27(9):1248–1258

    CAS  Google Scholar 

  116. Lee YY, Jung H, Ryu HW, Oh KC, Jeon JM, Cho KS (2018) Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag 71:277–286

    CAS  Google Scholar 

  117. Huber-Humer M, Tintner J, Böhm K, Lechner P (2011) Scrutinizing compost properties and their impact on methane oxidation efficiency. Waste Manag 31(5):871–883

    CAS  Google Scholar 

  118. Scheutz C, Pedersen RB, Petersen PH, Jørgensen JHB, Ucendo IMB, Mønster JG, Samuelsson J, Kjeldsen P (2014) Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag 34(7):1179–1190

    CAS  Google Scholar 

  119. Scheutz C, Cassini F, De Schoenmaeker J, Kjeldsen P (2017) Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. Waste Manag 63:203–212

    CAS  Google Scholar 

  120. Wilshusen JH, Hettiaratchi JPA, Stein VB (2004) Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Manag 24(7):643–653

    CAS  Google Scholar 

  121. Wilshusen JH, Hettiaratchi JPA, De Visscher A, Saint-Fort R (2004) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129(2):305–314

    CAS  Google Scholar 

  122. Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    CAS  Google Scholar 

  123. Xie T, Reddy KR, Wang C, Yargicoglu EN, Spokas K (2015) Characteristics and applications of biochar for environmental remediation: a review. Crit Rev Environ Sci Tech 45(9):939–969

    CAS  Google Scholar 

  124. Spokas KA (2010) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303

    CAS  Google Scholar 

  125. Mesa AC, Spokas KA (2011) Impacts of biochar (black carbon) additions on the sorption and efficacy of herbicides. Herb Environ 13:315–340

    Google Scholar 

  126. Yaghoubi P, Yargicoglu EN, Reddy KR (2014) Effects of biochar-amendment to landfill cover soil on microbial methane oxidation: initial results. In: Proc. geo-congress 2014: geo-characterization and modeling for sustainability, pp 1849–1858

  127. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82

    CAS  Google Scholar 

  128. Busscher WJ, Novak JM, Evans DE, Watts DW, Niandou MAS, Ahmedna M (2010) Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci 175(1):10–14

    CAS  Google Scholar 

  129. Yargicoglu EN, Reddy KR (2017) Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: a laboratory column study. J Environ Manage 193:19–31

    CAS  Google Scholar 

  130. Yargicoglu EN, Reddy KR (2018) Biochar-amended soil cover for microbial methane oxidation: effect of biochar amendment ratio and cover profile. J Geotech Geoenviron 144(3):04017123

    Google Scholar 

  131. Reddy KR, Yargicoglu EN, Chetri JK (2021) Field-scale performance of biochar-amended soil covers for landfill CH4 oxidation. Biomass Convers Bior. https://doi.org/10.1007/s13399-021-01487-w

    Article  Google Scholar 

  132. Henneberger R, Chiri E, Bodelier PE, Frenzel P, Lüke C, Schroth MH (2015) Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 17(5):1721–1737

    CAS  Google Scholar 

  133. Gebert J, Perner M (2015) Impact of preferential methane flow through soil on microbial community composition. Eur J Soil Biol 69:8–16

    CAS  Google Scholar 

  134. Huang D, Yang L, Xu W, Chen Q, Ko JH, Xu Q (2020) Enhancement of the methane removal efficiency via aeration for biochar-amended landfill soil cover. Environ Pollut 263(Part B):114413

    CAS  Google Scholar 

  135. Wu B, Xi B, He X, Sun X, Li Q, Ouche Q, Zhang H, Xue C (2020) Methane emission reduction enhanced by hydrophobic biochar-modified soil cover. Processes 8(2):162

    CAS  Google Scholar 

  136. Geck C, Scharff H, Pfeiffer EM, Gebert J (2016) Validation of a simple model to predict the performance of methane oxidation systems, using field data from a large scale biocover test field. Waste Manag 56:280–289

    CAS  Google Scholar 

  137. Cassini F, Scheutz C, Skov BH, Mou Z, Kjeldsen P (2017) Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution. Waste Manag 63:213–225

    CAS  Google Scholar 

  138. Schuetz C, Bogner J, Chanton J, Blake D, Morcet M, Kjeldsen P (2003) Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils. Environ Sci Technol 37(22):5150–5158

    CAS  Google Scholar 

  139. Scaglia B, Orzi V, Artola A, Font X, Davoli E, Sanchez A, Adani F (2011) Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability. Bioresour Technol 102(7):4638–4645

    CAS  Google Scholar 

  140. Scheutz C, Bogner J, Chanton JP, Blake D, Morcet M, Aran C, Kjeldsen P (2008) Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste Manag 28(10):1892–1908

    CAS  Google Scholar 

  141. Scheutz C, Kjeldsen P (2003) Capacity for biodegradation of CFCs and HCFCs in a methane oxidative counter-gradient laboratory system simulating landfill soil covers. Environ Sci Technol 37(22):5143–5149

    CAS  Google Scholar 

  142. Scheutz C, Kjeldsen P (2005) Biodegradation of trace gases in simulated landfill soil. J Air Waste Manag Assoc 55(7):878–885

    CAS  Google Scholar 

  143. Wang X, Yue D, Zhao K, Han B, Yang T (2015) Mitigation of non-methane organic compounds through landfill soil cover and its environmental implications. J Mater Cycles Waste Manag 17(4):616–625

    Google Scholar 

  144. Su Y, Pei J, Tian B, Fan F, Tang M, Li W, He R (2015) Potential application of biocover soils to landfills for mitigating toluene emission. J Hazard Mater 299:18–26

    CAS  Google Scholar 

  145. Capanema MA, Cabana H, Cabral AR (2014) Reduction of odors in pilot-scale landfill biocovers. Waste Manag 34(4):770–779

    CAS  Google Scholar 

  146. Bergersen O, Haarstad K (2008) Metal oxides remove hydrogen sulfide from landfill gas produced from waste mixed with plaster board under wet conditions. J Air Waste Manag Assoc 58(8):1014–1021

    CAS  Google Scholar 

  147. Hurst C, Longhurst P, Pollard S, Smith R, Jefferson B, Gronow J (2005) Assessment of municipal waste compost as a daily cover material for odor control at landfill sites. Environ Pollut 135(1):171–177

    CAS  Google Scholar 

  148. Xia FF, Su Y, Wei XM, He YH, Wu ZC, Ghulam A, He R (2014) Diversity and activity of sulphur-oxidizing bacteria and sulphate-reducing bacteria in landfill cover soils. Lett Appl Microbiol 59(1):26–34

    CAS  Google Scholar 

  149. Fang Y, Zhong Z, Shen D, Du Y, Xu J, Long Y (2016) Endogenous mitigation of H2S inside of the landfills. Environ Sci Pollut Res 23(3):2505–2512

    CAS  Google Scholar 

  150. Xu Q, Townsend T, Reinhart D (2010) Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials. Waste Manag 30(4):660–666

    CAS  Google Scholar 

  151. Plaza C, Xu Q, Townsend T, Bitton G, Booth M (2007) Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills. J Environ Manage 84(3):314–322

    CAS  Google Scholar 

  152. Ko JH, Xu Q, Jang YC (2015) Emissions and control of hydrogen sulfide at landfills: a review. Crit Rev Environ Sci Tech 45(19):2043–2083

    CAS  Google Scholar 

  153. He R, Xia FF, Wang J, Pan CL, Fang CR (2011) Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover. J Hazard Mater 186(1):773–778

    CAS  Google Scholar 

  154. He R, Xia FF, Bai Y, Wang J, Shen DS (2012) Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alternative landfill cover. J Hazard Mater 217:67–75

    Google Scholar 

  155. Lee EH, Moon KE, Cho KS (2017) Long-term performance and bacterial community dynamics in biocovers for mitigating methane and malodorous gases. J Biotechnol 242:1–10

    CAS  Google Scholar 

  156. Ding Y, Cai C, Xiong J, Qian A, Wei J, Hu B, Wu W, Han Z, Zhang H, Ni W (2016) Evaluation of alternative cover materials for reducing hydrogen sulfide emission from municipal solid waste (MSW) landfills. Trans ASABE 59(4):949–957

    CAS  Google Scholar 

  157. Xia FF, Zhang HT, Wei XM, Su Y, He R (2015) Characterization of H2S removal and microbial community in landfill cover soils. Environ Sci Pollut Res 22(23):18906–18917

    CAS  Google Scholar 

  158. Kjeldsen KU, Joulian C, Ingvorsen K (2004) Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environ Sci Technol 38(7):2038–2043

    CAS  Google Scholar 

  159. Reddy KR, Grubb DG, Kumar G (2018) Innovative biogeochemical soil cover to mitigate landfill gas emissions. In: Proc. international conference on protection and restoration of the environment XIV, Thessaloniki

  160. Reddy KR, Kumar Reddy G, Gopakumar A, Rai RK, Grubb DG (2018) CO2 Sequestration using BOF slag: application in landfill cover. In: Proc. international conference on protection and restoration of the environment XIV, Thessaloniki

  161. Chetri JK, Reddy KR, Grubb DG (2019) Innovative biogeochemical cover to mitigate landfill gas emissions: investigation of controlling parameters based on batch and column experiments. Environ Process 6(4):935–949

    CAS  Google Scholar 

  162. Reddy KR, Gopakumar A, Chetri JK, Kumar G, Grubb DG (2019) Sequestration of landfill gas emissions using basic oxygen furnace slag: effects of moisture content and humid gas flow conditions. J Environ Eng 145(7):04019033

    CAS  Google Scholar 

  163. Reddy KR, Chetri JK, Kumar G, Grubb DG (2019) Effect of basic oxygen furnace slag type on carbon dioxide sequestration from landfill gas emissions. Waste Manag 85:425–436

    CAS  Google Scholar 

  164. Reddy KR, Gopakumar A, Rai RK, Kumar G, Chetri JK, Grubb DG (2019) Effect of basic oxygen furnace slag particle size on sequestration of carbon dioxide from landfill gas. Waste Manag Res 37(5):469–477

    CAS  Google Scholar 

  165. Chetri JK, Reddy KR, Grubb DG (2020) Carbon dioxide and hydrogen sulfide removal from simulated landfill gas using steel slag. J Environ Eng 146:04020139

    CAS  Google Scholar 

  166. Reddy KR, Gopakumar A, Chetri JK (2019) Critical review of applications of iron and steel slags for carbon sequestration and environmental remediation. Rev Environ Sci Biotechnol 18(1):127–152

    CAS  Google Scholar 

  167. Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:463638

    Google Scholar 

  168. Montes-Morán MA, Concheso A, Canals-Batlle C, Aguirre NV, Ania CO, Martín MJ, Masaguer V (2012) Linz-Donawitz steel slag for the removal of hydrogen sulfide at room temperature. Environ Sci Technol 46(16):8992–8997

    Google Scholar 

  169. Kim K, Asaoka S, Yamamoto T, Hayakawa S, Takeda K, Katayama M, Onoue T (2012) Mechanisms of hydrogen sulfide removal with steel making slag. Environ Sci Technol 46(18):10169–10174

    CAS  Google Scholar 

  170. Asaoka S, Okamura H, Morisawa R, Murakami H, Fukushi K, Okajima T, Katayama M, Inada Y, Yogi C, Ohta T (2013) Removal of hydrogen sulfide using carbonated steel slag. Chem Eng J 228:843–849

    CAS  Google Scholar 

  171. Sarperi L, Surbrenat A, Kerihuel A, Chazarenc F (2014) The use of an industrial by-product as a sorbent to remove CO2 and H2S from biogas. J Environ Chem Eng 2(2):1207–1213

    CAS  Google Scholar 

  172. Caicedo-Ramirez A, Laroco N, Bilgin AA, Shiokari S, Grubb DG, Hernandez M (2020) Engineered addition of slag fines for the sequestration of phosphate and sulfide during mesophilic anaerobic digestion. Water Environ Res 92:455–464

    CAS  Google Scholar 

  173. Reddy KR, Rai RK, Green SJ, Chetri JK (2020) Effect of basic oxygen furnace slag-infiltrated water on methane oxidation and community composition in biogeochemical landfill cover system. J Hazard Toxic Radioact Waste 24(2):04020001

    CAS  Google Scholar 

  174. Yilmaz D, Lassabatere L, Deneele D, Angulo-Jaramillo R, Legret M (2013) Influence of carbonation on the microstructure and hydraulic properties of a basic oxygen furnace slag. Vadose Zone J 12(2):1–15

    Google Scholar 

  175. Pan SY, Adhikari R, Chen YH, Li P, Chiang PC (2016) Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J Clean Prod 137:617–631

    CAS  Google Scholar 

  176. Bertos MF, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater 112(3):193–205

    Google Scholar 

  177. Jafari NH, Stark TD, Thalhamer T (2017) Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills. Waste Manag 59:286–301

    CAS  Google Scholar 

  178. Jafari NH, Stark TD, Thalhamer T (2017) Progression of elevated temperatures in municipal solid waste landfills. J Geotech Geoenviron 143(8):05017004

    Google Scholar 

  179. Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100(16):3792–3798

    CAS  Google Scholar 

Download references

Acknowledgements

This project is funded by the US National Science Foundation (Grant CMMI # 1724773), which is gratefully acknowledged. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti K. Chetri.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetri, J.K., Reddy, K.R. Advancements in Municipal Solid Waste Landfill Cover System: A Review. J Indian Inst Sci 101, 557–588 (2021). https://doi.org/10.1007/s41745-021-00229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00229-1

Keywords

Navigation