Skip to main content
Log in

Effects of Copper and PQQ on the Denitrification Activities of Microorganisms Facilitating Nitrite- and Nitrate-Dependent DAMO Reaction

  • Technical note
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

The growth rate of microorganisms that facilitate the denitrifying anaerobic methane oxidation (DAMO) reaction is slow; thus, establishment of appropriate cultivation conditions for these microorganisms is necessary. In this study, the effect of copper (Cu) and pyrroloquinoline quinone (PQQ) concentrations on the nitrite- and nitrate-dependent DAMO activities of these microorganisms were evaluated using an upflow-type continuous cultivation system. The study confirmed that 6 µM Cu and 2 nM PQQ had a positive effect on nitrite-dependent DAMO, but had little effect on nitrate-dependent DAMO. Conventional basal medium does not contain PQQ; therefore, supplementation of basal medium with PQQ could be an effective method for the cultivation of bacteria that facilitate nitrite-dependent DAMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Growth stimulating activity for microorganisms in naturally occurring substances and partial characterization of the substance for the activity as pyrroloquinoline quinone. Agric Biol Chem 49:699–709

    CAS  Google Scholar 

  • Anthony C (2004) The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 428:2–9

    Article  CAS  Google Scholar 

  • Anthony C, Ghosh M (1998) The structure and function of the PQQ-containing quinoprotein dehydrogenases. Prog Biophys Mol Biol 69:1–21

    Article  CAS  Google Scholar 

  • Ettwig KF, Van Alen T, Van De Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJCT, Van Alen T, Luesken F, Wu ML, Van De Pas-Schoonen KT, Op Den Camp HJM, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Fu L, Ding J, Lu YZ, Ding ZW, Zeng RJ (2017) Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process. Appl Microbiol Biotechnol 101:3895–3906

    Article  CAS  Google Scholar 

  • Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:61

    Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  Google Scholar 

  • Hatamoto M, Kimura M, Sato T, Koizumi M, Takahashi M, Kawakami S, Araki N, Yamaguchi T (2014) Enrichment of denitrifying methane-oxidizing microorganisms using up-flow continuous reactors and batch cultures. PLoS One 9:e115823. https://doi.org/10.1371/journal.pone.0115823

    Article  CAS  Google Scholar 

  • Hatamoto M, Sato T, Nemoto S, Yamaguchi T (2017) Cultivation of denitrifying anaerobic methane-oxidizing microorganisms in a continuous-flow sponge bioreactor. Appl Microbiol Biotechnol 101:5881–5888

    Article  CAS  Google Scholar 

  • He Z, Cai C, Geng S, Lou L, Xu X, Zheng P, Hu B (2013) Mdodeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320

    Article  CAS  Google Scholar 

  • He Z, Geng S, Pan Y, Cai C, Wang J, Wang L, Liu S, Zheng P, Xu X, Hu B (2015a) Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: iron (II) and copper (II) make a difference. Water Res 85:235–243

    Article  CAS  Google Scholar 

  • He Z, Geng S, Shen L, Lou L, Zheng P, Xu X, Hu B (2015b) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res 68:554–562

    Article  CAS  Google Scholar 

  • He Z, Wang J, Zhang X, Cai C, Geng S, Zheng P, Xu X, Hu B (2015c) Nitrogen removal from wastewater by anaerobic methane-driven denitrification in a lab-scale reactor: heterotrophic denitrifiers associated with denitrifying methanotrophs. Appl Microbiol Biotechnol 99:10853–10860

    Article  CAS  Google Scholar 

  • He Z, Geng S, Wang L, Cai C, Wang J, Liu J, Zheng P, Xu X, Hu B (2016) Improvement of mineral nutrient concentrations and pH control for the nitrite-dependent anaerobic methane oxidation process. Sep Purif Technol 162:148–153

    Article  CAS  Google Scholar 

  • Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan Z (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:377–384

    Article  CAS  Google Scholar 

  • Kampman C, Temmink H, Hendrickx TLG, Zeeman G, Buisman CJN (2014) Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 °C. J Hazard Mater 274:428–435

    Article  CAS  Google Scholar 

  • Luesken FA, Van Alen TA, Van Der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TLG, Zeeman G, Temmink H, Strous M, Op Den Camp HJM, Jetten MSM (2011) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854

    Article  CAS  Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MSM (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034

    Article  CAS  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  Google Scholar 

  • Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, Van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248

    Article  CAS  Google Scholar 

  • Wu ML, Wessels HJCT, Pol A, Op den Camp HJM, Jetten MSM, van Niftrik L, Keltjens JT (2015) XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 81:1442–1451

    Article  CAS  Google Scholar 

  • Zhu B, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwiga KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by JSPS KAKENHI Grant Numbers 25701010, 15K12225, and 16H02975.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Hatamoto.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatamoto, M., Nemoto, S. & Yamaguchi, T. Effects of Copper and PQQ on the Denitrification Activities of Microorganisms Facilitating Nitrite- and Nitrate-Dependent DAMO Reaction. Int J Environ Res 12, 749–753 (2018). https://doi.org/10.1007/s41742-018-0118-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41742-018-0118-7

Keywords

Navigation