Skip to main content

Advertisement

Log in

SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil

  • Research Article
  • Published:
Journal of Healthcare Informatics Research Aims and scope Submit manuscript

Abstract

The well-being of human and wildlife health involves many challenges, such as monitoring the movement of pathogens; expanding health surveillance; collecting data and extracting information to identify and predict risks; integrating specialists from different areas to handle data, species and distinct social and environmental contexts; and the commitment to bringing relevant information to society. In Brazil, there is still the difficulty of building a system that is not impaired by its large territorial extension and its poorly integrated sectoral policies. The Brazilian Wildlife Health Information System, SISS-Geo (SISS-Geo is the abbreviation of “Sistema de Informação em Saúde Silvestre Georreferenciado” (which translates to “Georeferenced Wildlife Health Information System”) and can be accessed at http://www.biodiversidade.ciss.fiocruz.br or http://sissgeo.lncc.br (in Portuguese)), is a platform for collaborative monitoring that intends to overcome the challenges in wildlife health. It aims at the integration and participation of various segments of society, encompassing the registration of animals occurrences by citizen scientists; the reliable diagnosis of pathogens from the laboratory and expert networks; and computational and mathematical challenges in analytical and predictive systems, model interpretation, data integration and visualization, and geographic information systems. It has been successfully applied to support decision-making on recent wildlife health events, such as a Yellow Fever epizootic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.tdwg.org

  2. http://mapbiomas.org

  3. https://pmm.nasa.gov/data-access/downloads/gpm

  4. http://www.worldclim.org

  5. https://www.ibge.gov.br

  6. http://sedac.ciesin.columbia.edu

  7. https://asterweb.jpl.nasa.gov/gdem.asp

  8. http://morcego.siss.lncc.br/i3geo/interface/black_ol.htm

  9. After all, it is an ambitious system that aims to aggregate and store records on wildlife health of a vast country.

  10. Consider the extreme situation where all the predictions are non-alerts, including both true as false negatives. Since, in principle, only the cases of alerts are of interest and subject to confirmation, in this scenario, the model would be doomed to degeneration.

  11. http://www.mma.gov.br/component/k2/item/10443-pr& (In Portuguese)

  12. http://dspace.jbrj.gov.br/jspui/handle/doc/95

  13. http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home

  14. http://www.agricultura.gov.br/assuntos/sanidade-animal-e-vegetal/animal-animal/epidemiologia/ingles/animal-health-information-system

  15. http://www.funbio.org.br/probioii

References

  1. Alves R (2017) Surto de Febre Amarela: A experiência da resposta no Brasil. https://www.arca.fiocruz.br/bitstream/icict/22895/7/14h30-RenatoAlves.pdf

  2. Betts A, Gray C, Zelek M, MacLean RC, King KC (2018) High parasite diversity accelerates host adaptation and diversification. Science 360(6391):907–911. https://doi.org/10.1126/science.aam9974

    Article  Google Scholar 

  3. Brinckman A, Chard K, Gaffney N, Hategan M, Jones MB, Kowalik K, Kulasekaran S, Ludäscher B., Mecum BD, Nabrzyski J, Stodden V, Taylor IJ, Turk MJ, Turner K (2018) Computing environments for reproducibility: capturing the Whole tale. future generation computer systems. https://doi.org/10.1016/j.future.2017.12.029

    Article  Google Scholar 

  4. CBD (2014) Subsidiary Body on Scientific Technical and Technological Advice. Consideration of Issues in Progress: Health and Biodiversity. Convention on Biological Diversity. Sixteenth meeting. Tech. rep.

  5. Chame M, Barbosa HJC, Gadelha L, Augusto DA, Krempser E, Abdalla L (2014) Sistema de informação em saúde Silvestre - SISS-geo. In: III Seminário grandes desafios da computação no brasil - fase 2. SBC

  6. Chame M, Labarthe N (2013) Saúde Silvestre e humana: experiências e Perspectivas fundação Oswaldo Cruz (Fiocruz)

  7. Chapelle O, Schölkopf B, Zien A (2010) Semi-supervised Learning. MIT Press, Cambridge

    Google Scholar 

  8. Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S, Rohr JR (2015) Biodiversity inhibits parasites: Broad evidence for the dilution effect. In: Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1506279112

    Article  Google Scholar 

  9. Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, Hinsen K, Larmande P, Bras YL, Lemoine F, Mareuil F, Ménager H, Pradal C, Blanchet C (2017) Scientific workflows for computational reproducibility in the life sciences: Status, challenges and opportunities. Futur Gener Comput Syst 75:284–298. https://doi.org/10.1016/j.future.2017.01.012

    Article  Google Scholar 

  10. Convention on Biological Diversity (CBD) (2010) Decision Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Tenth Meeting. X/2. The Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets. UNEP/CBD/COP/DEX/X/2. https://www.cbd.int/doc/decisions/cop-10/cop-10-dec-02-en.pdf

  11. Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MdA, Santos FBd, Vazeille M, Vasconcelos PFdC, Lourenço-de Oliveira R, Failloux AB (2017) Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci Rep 7(1):4848. https://doi.org/10.1038/s41598-017-05186-3

    Article  Google Scholar 

  12. Cunningham A, Daszak P, Wood J (2017) One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos Trans R Soc B Biological Sciences 372:20160167. https://doi.org/10.1098/rstb.2016.0167

    Article  Google Scholar 

  13. Edwards JL (2004) Research and societal benefits of the global biodiversity information facility. BioScience 54(6):486. https://doi.org/10.1641/0006-3568(2004)054[0486:RASBOT]2.0.CO;2. http://bioscience.oxfordjournals.org/content/54/6/485.full

    Article  MathSciNet  Google Scholar 

  14. Estrada-Peña A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J (2014) Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 30(4):205–14. https://doi.org/10.1016/j.pt.2014.02.003

    Article  Google Scholar 

  15. Fegraus EH, Andelman S, Jones MB, Schildhauer M (2005) Maximizing the value of ecological data with structured metadata: an introduction to ecological metadata language (EML) and Principles for Metadata Creation. Bull Ecol Soc Am 86 (3):158–168. https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2

    Article  Google Scholar 

  16. Gadelha L, Guimarães P, Moura AM, Drucker DP, Dalcin E, Gall G, Tavares J, Palazzi D, Poltosi M, Porto F, Moura F, Leo WV (2014) SiBBr: Uma Infraestrutura para Coleta, integração e ana̧lise de Dados sobre a Biodiversidade Brasileira. In: VIII Brazilian e-science Workshop (BRESCI 2014). Proc XXXIV Congress of the Brazilian Computer Society

  17. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Systems with Applications 38(8):10,425–10,436. https://doi.org/10.1016/j.eswa.2011.02.118

    Article  Google Scholar 

  18. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006) Feature extraction: foundations and applications. Springer-Verlag. https://dl.acm.org/citation.cfm?id=1208773

  19. Hardisty A, Roberts D, Addink W, Aelterman B, Agosti D, Amaral-Zettler L, Ariño A. H., Arvanitidis C, Backeljau T, Bailly N, Belbin L, Berendsohn W, Bertrand N, Caithness N, Campbell D, Cochrane G, Conruyt N, Culham A, Damgaard C, Davies N, Fady B, Faulwetter S, Feest A, Field D, Garnier E, Geser G, Gilbert J, Grosche Grosser D, Herbinet B, Hobern D, Jones A, de Jong Y, King D, Knapp S, Koivula H, Los W, Meyer C, Morris RA, Morrison N, Morse D, Obst M, Pafilis E, Page LM, Page R, Pape T, Parr C, Paton A, Patterson D, Paymal E, Penev L, Pollet M, Pyle R, von Raab-Straube E, Robert V, Robertson T, Rovellotti O, Saarenmaa H, Schalk P, Schaminee J, Schofield P, Sier A, Sierra S, Smith V, van Spronsen E, Thornton-Wood S, van Tienderen P, van Tol J, O’Tuama E, Uetz P, Vaas L, Vignes Lebbe R, Vision T, Vu D, De Wever A, White R, Willis K, Young F (2013) A decadal view of biodiversity informatics:, challenges and priorities. BMC Ecol 13(1):16. https://doi.org/10.1186/1472-6785-13-16

    Article  Google Scholar 

  20. He Z, Kays R, Zhang Z, Ning G, Huang C, Han TX, Millspaugh J, Forrester T, Mcshea W (2016) Visual informatics tools for supporting large-scale collaborative wildlife monitoring with citizen scientists. IEEE Circuits Syst Mag 16 (1):73–86. https://doi.org/10.1109/MCAS.2015.2510200

    Article  Google Scholar 

  21. Heberling JM, Isaac BL (2018) iNaturalist as a tool to expand the research value of museum specimens. Appl Plant Sci 6 (11):e01193. https://doi.org/10.1002/aps3.1193

    Article  Google Scholar 

  22. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451 (7181):990–993. https://doi.org/10.1038/nature06536

    Article  Google Scholar 

  23. Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9(4):485–498. https://doi.org/10.1111/j.1461-0248.2006.00885.x

    Article  Google Scholar 

  24. Keesing F, Ostfeld RS (2015) Is biodiversity good for your health?. Science 349(6245):237–236. https://doi.org/10.1126/science.aac7892

    Article  Google Scholar 

  25. Koza JR, R J (1992) Genetic programming : on the programming of computers by means of natural selection. MIT Press. https://dl.acm.org/citation.cfm?id=138936

  26. Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11(6):533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x

    Article  Google Scholar 

  27. Meirelles PM, Gadelha Jr. L. M. R., Francini-Filho RB, Leão RdM, Amado-Filho GM, Bastos AC, Paranhos RPdR, Rezende CE, Swings J, Siegle E, Neto NEA, Leitão SN, Coutinho R, Mattoso M, Salomon PS, Valle RAB, Pereira RC, Kruger RH, Thompson C, Thompson FL (2015) BaMBa: towards the integrated management of Brazilian marine environmental data. Database 2015. https://doi.org/10.1093/database/bav088

    Article  Google Scholar 

  28. Michener WK, Jones MB (2012) Ecoinformatics: supporting ecology as a data-intensive science. Trends Ecol Evol 27(2):85–93. https://doi.org/10.1016/j.tree.2011.11.016

    Article  Google Scholar 

  29. Mondelli ML, Magalhães T, Loss G, Wilde M, Foster I, Mattoso M, Katz D, Barbosa H, de Vasconcelos ATR, Ocaña K., Gadelha LMR (2018) Bioworkbench: a high-performance framework for managing and analyzing bioinformatics experiments. PeerJ 6:e5551. https://doi.org/10.7717/peerj.5551

    Article  Google Scholar 

  30. Moreau L, Groth P (2013) Provenance: An Introduction to PROV, vol 3. Morgan & Claypool, San Rafael. https://doi.org/10.2200/S00528ED1V01Y201308WBE007

    Google Scholar 

  31. Moreira-Soto A, Torres MC, Lima de Mendonça MC, Mares-Guia MA, Damasceno dos Santos Rodrigues C, Fabri A, Cardoso dos Santos C, Machado araújo ES, Fischer C, Ribeiro Nogueira RM, Drosten C, Sequeira PC, Drexler JF, Bispo de Filippis AM (2018) Evidence for multiple sylvatic transmission cycles during the 2016-2017 yellow fever virus outbreak, Brazil. Clinical Microbiology and Infection. https://doi.org/10.1016/J.CMI.2018.01.026

    Article  Google Scholar 

  32. Ostfeld R (2000) Keesing felicia: biodiversity and disease risk: the case of lyme disease. Conserv Biol 14:722–728. https://doi.org/10.1046/j.1523-1739.2000.99014.x

    Article  Google Scholar 

  33. Ostfeld RS, Glass G, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20(6):328–336. https://doi.org/10.1016/j.tree.2005.03.009

    Article  Google Scholar 

  34. Pando F (2017) How species interactions are managed in Plinian core: status and questions. Proceedings of TDWG 1:e20556. https://doi.org/10.3897/tdwgproceedings.1.20556

    Article  Google Scholar 

  35. Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, Bruford MW, Brummitt N, Butchart SHM, Cardoso AC, Coops NC, Dulloo E, Faith DP, Freyhof J, Gregory RD, Heip C, Höft R., Hurtt G, Jetz W, Karp DS, McGeoch MA, Obura D, Onoda Y, Pettorelli N, Reyers B, Sayre R, Scharlemann JPW, Stuart SN, Turak E, Walpole M, Wegmann M (2013) Ecology. Essential biodiversity variables. Science (New York, N.Y.) 339(6117):277–8. https://doi.org/10.1126/science.1229931

    Article  Google Scholar 

  36. Peterson AT (2014) Mapping disease transmission risk: enriching models using biogeography and ecology. JHU Press

  37. Peterson AT, Soberón J, Krishtalka L (2015) A global perspective on decadal challenges and priorities in biodiversity informatics. BMC ecology 15(1):15. https://doi.org/10.1186/s12898-015-0046-8

    Article  Google Scholar 

  38. Poulin R (2010) Network analysis shining light on parasite ecology and diversity. Trends Parasitol 26(10):492–498. https://doi.org/10.1016/j.pt.2010.05.008

    Article  Google Scholar 

  39. QGIS Development Team (2009) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

  40. Ryser-Degiorgis M (2013) Wildlife health investigations: needs, challenges and recommendations. BMC Vet Res 9:223. https://doi.org/10.1186/1746-6148-9-223

    Article  Google Scholar 

  41. Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J, Braak K, Otegui J, Russell L, Desmet P (2014) The GBIF integrated publishing toolkit:, facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9(8):e102,623. https://doi.org/10.1371/journal.pone.0102623

    Article  Google Scholar 

  42. Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33(1-2):1–39. https://doi.org/10.1007/s10462-009-9124-7

    Article  Google Scholar 

  43. Romanelli C, Cooper D, Campbell-Lendrum D, Maiero M, Karesh WB, Hunter D, Golden CD (2015) Connecting global priorities: biodiversity and human health: a state of knowledge review. World Health Organization and Secretariat of the Convention on Biological Diversity

  44. Rottstock T, Joshi J, Kummer V, Fischer M (2014) Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecol 95(7):1907–1917. https://doi.org/10.1890/13-2317.1

    Article  Google Scholar 

  45. Sánchez-Tapia A, de Siqueira MF, Lima RO, Barros FSM, Gall GM, Gadelha LMR, da Silva LAE, Osthoff C (2018) Model-R: a framework for scalable and reproducible ecological niche modeling. In: High Performance Computing: 4th Latin American Conference, CARLA 2017. Communications in Computer and Information Science. https://doi.org/10.1007/978-3-319-73353-1_15, vol 796. Springer, Berlin, pp 218–232

    Google Scholar 

  46. Schulz K, Calba C, Peyre M, Staubach C, Conraths F (2016) Hunters’ acceptability of the surveillance system and alternative surveillance strategies for classical swine fever in wild boar - a participatory approach. BMC Veterinary Research 12:187. https://doi.org/10.1186/s12917-016-0822-5

    Article  Google Scholar 

  47. Settles B (2009) Active learning literature survey. Tech. rep., University of Wisconsin-Madison

  48. Sillero N (2011) What does ecological modelling model? a proposed classification of ecological niche models based on their underlying methods. Ecol Model 222 (8):1343–1346. https://doi.org/10.1016/j.ecolmodel.2011.01.018

    Article  Google Scholar 

  49. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, Damoulas T, Dhondt AA, Dietterich T, Farnsworth A, Fink D, Fitzpatrick JW, Fredericks T, Gerbracht J, Gomes C, Hochachka WM, Iliff MJ, Lagoze C, La Sorte FA, Merrifield M, Morris W, Phillips TB, Reynolds M, Rodewald AD, Rosenberg KV, Trautmann NM, Wiggins A, Winkler DW, Wong WK, Wood CL, Yu J, Kelling S (2014) The eBird enterprise: a integrated approach to development and application of citizen science. Biol Conserv 169:31–40. https://doi.org/10.1016/J.BIOCON.2013.11.003

    Article  Google Scholar 

  50. Sutherst RW (2001) The vulnerability of animal and human health to parasites under de global change. Int J Parasitol 31:933–948. https://doi.org/10.1016/S0020-7519(01)00203-X

    Article  Google Scholar 

  51. Vasconcelos P, Monath T (2016) Yellow fever remains a potential threat to public health. Vector-Borne and zoonotic diseases 16(8). https://doi.org/10.1089/vbz.2016.2031

    Article  Google Scholar 

  52. Wardeh M, Risley C, McIntyre MK, Setzkorn C, Baylis M (2015) Database of host-pathogen and related species interactions, and their global distribution. Scientific Data 2(150):049. https://doi.org/10.1038/sdata.2015.49

    Article  Google Scholar 

  53. Wieczorek J, Bloom D, Guralnick R, Blum S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core:, an evolving community-developed biodiversity data standard. PloS One 7(1):e29,715. https://doi.org/10.1371/journal.pone.0029715

    Article  Google Scholar 

  54. Xavier SCdC, Roque ALR, Lima VdS, Monteiro KJL, Otaviano JCR, Ferreira da Silva LFC, Jansen AM (2012) Lower richness of small wild mammal species and chagas disease risk. PLoS Negl Trop Dis 6(5):e1647. https://doi.org/10.1371/journal.pntd.0001647

    Article  Google Scholar 

Download references

Funding

This work is funded by the Global Environment Facility (GEF) among World Bank, Caixa Econômica Federal, Brazilian Biodiversity Fund (Funbio), and Fiocruz for the development of the “National Biodiversity Mainstreaming and Institutional Consolidation Project” coordinated by the Brazilian Ministry of the Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz M. R. Gadelha Jr..

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Availability

Web interface: http://sissgeo.lncc.br and http://www.biodiversidade.ciss.fiocruz.br Geographical explorer: http://morcego.siss.lncc.br/i3geo/interface/black_ol.htm Mobile application (Android): https://play.google.com/store/apps/details?id=siss.ui Mobile application (iOS): https://itunes.apple.com/br/app/siss-geo/id1291912325

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chame, M., Barbosa, H.J.C., Gadelha, L.M.R. et al. SISS-Geo: Leveraging Citizen Science to Monitor Wildlife Health Risks in Brazil. J Healthc Inform Res 3, 414–440 (2019). https://doi.org/10.1007/s41666-019-00055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41666-019-00055-2

Keywords

Navigation