Skip to main content
Log in

Polydopamine-Based Colorimetric Superwettable Biosensor for Highly Sensitive Detection of Hydrogen Peroxide and Glucose

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Superwettable surface has broad application prospects in fabricating biosensors due to its significant enrichment effect. Here, we report a polydopamine-based colorimetric superwettable sensor that integrates superhydrophobic–superhydrophilic micropatterns for the determination of hydrogen peroxide (H2O2) and glucose. Dopamine can be oxidized into polydopamine with the addition of horseradish peroxidase (HRP) and H2O2, leading to the deposited spots color change from colorless to black. The concentration of target can be determined by analyzing RGB value using a smartphone software. The superhydrophobic area on the superwettable surface helps capture droplets by confining them to superhydrophilic microwells. After droplet evaporation, the analytes are concentrated in the small superhydrophilic domain, thus greatly enhancing the sensitivity. The experimental results manifested that superwettable sensor is able to detect H2O2 with a broad linear range of 0.25 µmol/L–25 mmol/L and a low limit of detection (LOD) of 0.25 µmol/L by naked eye. For glucose detection, the linear range of the sensor is from 2 µmol/L to 20 mmol/L and LOD is 0.69 μmol/L. The superwettable sensor has been successfully applied in practical samples, including cancerous cells, milk, urine, and human serum samples with acceptable results. This superwettable sensor has several merits, such as high sensitivity, rapid response, and low sample volume in a single microdroplet, and shows great potential in manufacturing portable devices for complex biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors state that all the data supporting the findings are contained within the article and supplementary material.

References

  1. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Bio. 2007;8:722–8.

    Article  CAS  Google Scholar 

  2. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  3. López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 2007;252(1):1–8.

    Article  PubMed  Google Scholar 

  4. Chen W, Cai S, Ren Q-Q, Wen W, Zhao YD. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137:49–58.

    Article  CAS  PubMed  Google Scholar 

  5. Azad T, Ahmed S. Common milk adulteration and their detection techniques. Int J Food Contam. 2016;3(1):22.

    Article  Google Scholar 

  6. Bopitiya D, Guo S, Hearn MTW, Zhang J, Bennett LE. Formulations of selected energy beverages promote pro-oxidant effects of ascorbic acid and long-term stability of hydrogen peroxide. Food Chem. 2022;388: 133037.

    Article  CAS  PubMed  Google Scholar 

  7. Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA. Method for determination of hydrogen peroxide in adulterated milk using high performance liquid chromatography. Food Chem. 2019;283:431–6.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Zhou X, Dong W, Zhong Q, Mo X, Li H. Light responsive Fe-Tcpp@ICG for hydrogen peroxide detection and inhibition of tumor cell growth. Biosens Bioelectron. 2022;200: 113931.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Li L, Peng X, Chen R, Huo K, Chu PK. Non-enzymatic hydrogen peroxide photoelectrochemical sensor based on WO3 decorated core–shell TiC/C nanofibers electrode. Electrochim Acta. 2013;108:491–6.

    Article  CAS  Google Scholar 

  10. Yue Z, Zhang W, Wang C, Liu G, Niu W. CdS-EePt dimers based photoelectrochemical sensor for detection of H2O2. Mater Lett. 2012;74:180–2.

    Article  CAS  Google Scholar 

  11. Rodriguez-Gutierrez R, Ospina NS, Mccoy RG, Lipska KJ, Shah ND, Montori VM. Inclusion of hypoglycemia in clinical practice guidelines and performance measures in the care of patients with diabetes. Jama Intern Med. 2016;176(11):1714–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seaquist ER, Chow LS. Hypoglycemia in diabetes. JAMA. 2017;318(1):31–2.

    Article  PubMed  Google Scholar 

  13. Nathan DM. Diagnosing diabetes mellitus - best practices still unclear. Nat Rev Endocrinol. 2018;14(10):572–3.

    Article  PubMed  Google Scholar 

  14. Bergenstal RM. Continuous glucose monitoring: Transforming diabetes management step by step. Lancet. 2018;391(10128):1334–6.

    Article  PubMed  Google Scholar 

  15. Wang L, Shi XH, Zhang YF, Liu AA, Liu SL, Wang ZG, Pang DW. CdZnSes quantum dots condensed with ordered mesoporous carbon for high-sensitive electrochemiluminescence detection of hydrogen peroxide in live cells. Electrochim Acta. 2020;362: 137107.

    Article  CAS  Google Scholar 

  16. Karimi A, Husain SW, Hosseini M, Azar PA, Ganjali MR. Rapid and sensitive detection of hydrogen peroxide in milk by enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens Actuators B Chem. 2018;271:90–6.

    Article  CAS  Google Scholar 

  17. Li Y, Wang Y, Fu C, Wu Y, Cao H, Shi W, Jung YM. A simple enzyme-free SERS sensor for the rapid and sensitive detection of hydrogen peroxide in food. Analyst. 2020;145(2):607–12.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang R, Zhong Q, Liu Y, Ji J, Liu B. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites. Talanta. 2022;243: 123382.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trend Anal Chem. 2019;118:625–51.

    Article  CAS  Google Scholar 

  20. Żamojć K, Zdrowowicz M, Jacewicz D, Wyrzykowski D, Chmurzyński L. Fluorescent probes used for detection of hydrogen peroxide under biological conditions. Crit Rev Anal Chem. 2016;46(3):171–200.

    Article  PubMed  Google Scholar 

  21. Zambrano G, Nastri F, Pavone V, Lombardi A, Chino M. Use of an artificial miniaturized enzyme in hydrogen peroxide detection by chemiluminescence. Sensors. 2020;20(13):3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu C, Song G, Lin JM. Reactive oxygen species and their chemiluminescence-detection methods. TrAC Trends Anal Chem. 2006;25(10):985–95.

    Article  CAS  Google Scholar 

  23. Wang D, Dang X, Tan B, Zhang Q, Zhao H. 3D V2O5-MoS2/rGO nanocomposites with enhanced peroxidase mimicking activity for sensitive colorimetric determination of H2O2 and glucose. Spectrochim Acta A Mol Biomol Spectrosc. 2022;269: 120750.

    Article  CAS  PubMed  Google Scholar 

  24. Liu A, Li M, Wang J, Feng F, Zhang Y, Qiu Z, Chen Y, Meteku BE, Wen C, Yan Z, Zeng J. Ag@Au core/shell triangular nanoplates with dual enzyme-like properties for the colorimetric sensing of glucose. Chin Chem Lett. 2020;31(5):1133–6.

    Article  CAS  Google Scholar 

  25. Luo J, Liu R, Zhao S, Gao Y. Bimetallic Fe-Co nanoalloy confined in porous carbon skeleton with enhanced peroxidase mimetic activity for multiple biomarkers monitoring. J Anal Test. 2023;7:53–68.

    Article  Google Scholar 

  26. Sima F, Xu J, Wu D, Sugioka K. Ultrafast laser fabrication of functional biochips: new avenues for exploring 3D micro- and nano-environments. Micromachines. 2017;8(2):40.

    Article  PubMed Central  Google Scholar 

  27. Kemmler M, Sauer U, Schleicher E, Preininger C, Brandenburg A. Biochip point-of-care device for sepsis diagnostics. Sens Actuators B Chem. 2014;192:205–15.

    Article  CAS  Google Scholar 

  28. Sah V, Baier R. Bacteria inside semiconductors as potential sensor elements: biochip progress. Sensors. 2014;14(6):11225–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee J-H, Jung H-I. Biochip technology for monitoring posttraumatic stress disorder (PTSD). BioChip J. 2013;7(3):195–200.

    Article  CAS  Google Scholar 

  30. Chen X, Zhang L. Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens Actuators B Chem. 2018;254:648–59.

    Article  CAS  Google Scholar 

  31. Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns. Adv Mater. 2014;26(29):5025–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hou Y, Yu M, Chen X, Wang Z, Yao S. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. ACS Nano. 2014;9(1):71–81.

    Article  PubMed  Google Scholar 

  33. Tsougeni K, Petrou PS, Papageorgiou DP, Kakabakos SE, Tserepi A, Gogolides E. Controlled protein adsorption on microfluidic channels with engineered roughness and wettability. Sens Actuators B Chem. 2012;161(1):216–22.

    Article  CAS  Google Scholar 

  34. Songok J, Tuominen M, Teisala H, Haapanen J, Mäkelä J, Kuusipalo J, Toivakka M. Paper-based microfluidics: Fabrication technique and dynamics of capillary-driven surface flow. ACS Appl Mater Interfaces. 2014;6(22):20060–6.

    Article  CAS  PubMed  Google Scholar 

  35. Shi W, Xu T, Xu LP, Chen Y, Wen Y, Zhang X, Wang S. Cell micropatterns based on silicone-oil-modified slippery surfaces. Nanoscale. 2016;8(44):18612–5.

    Article  CAS  PubMed  Google Scholar 

  36. Xu T, Shi W, Huang J, Song Y, Zhang F, Xu LP, Zhang X, Wang S. Superwettable microchips as a platform toward microgravity biosensing. ACS Nano. 2017;11(1):621–6.

    Article  CAS  PubMed  Google Scholar 

  37. Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk. Nature. 2010;463(7281):640–3.

    Article  CAS  PubMed  Google Scholar 

  38. Ueda E, Levkin PA. Emerging applications of superhydrophilic superhydrophobic micropatterns. Adv Mater. 2013;25(9):1234–47.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Liu F, Yang Y, Xu LP. Droplet evaporation-induced analyte concentration toward sensitive biosensing. Mater Chem Front. 2021;5:5639–52.

    Article  CAS  Google Scholar 

  40. Xu T, Xu LP, Zhang X, Wang S. Bioinspired superwettable micropatterns for biosensing. Chem Soc Rev. 2019;48(12):3153–65.

    Article  CAS  PubMed  Google Scholar 

  41. Wu T, Xu T, Chen Y, Yang Y, Xu LP, Zhang X, Wang S. Renewable superwettable biochip for mirna detection. Sens Actuators B Chem. 2018;258:715–21.

    Article  CAS  Google Scholar 

  42. Zhou M, Fan C, Wang L, Xu T, Zhang X. Enhanced isothermal amplification for ultrafast sensing of SARS-CoV-2 in microdroplets. Anal Chem. 2022;94(10):4135–40.

    Article  CAS  PubMed  Google Scholar 

  43. He X, Xu T, Gao W, Xu LP, Pan T, Zhang X. Flexible superwettable tapes for on-site detection of heavy metals. Anal Chem. 2018;90(24):14105–10.

    Article  CAS  PubMed  Google Scholar 

  44. He X, Fan C, Xu T, Zhang X. Biospired janus silk e-textiles with wet-thermal comfort for highly efficient biofluid monitoring. Nano Lett. 2021;21(20):8880–7.

    Article  CAS  PubMed  Google Scholar 

  45. Xu T, Song Y, Gao W, Wu T, Xu LP, Zhang X, Wang S. Superwettable electrochemical biosensor toward detection of cancer biomarkers. ACS Sensors. 2018;3(1):72–8.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou Z, Wang L, Wang J, Liu C, Xu T, Zhang X. Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures. ACS Appl Mater Interfaces. 2022;14(47):52684–90.

    Article  CAS  PubMed  Google Scholar 

  47. Luo Y, Fan C, Song Y, Xu T, Zhang X. Ultra-trace enriching biosensing in nanoliter sample. Biosens Bioelectron. 2022;210: 114297.

    Article  CAS  PubMed  Google Scholar 

  48. Baker CJ, Deahl K, Domek J, Orlandi EW. Scavenging of H2O2 and production of oxygen by horseradish peroxidase. Arch Biochem Biophys. 2000;382(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  49. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP. Robust self-cleaning surfaces that function when exposed to either air or oil. Science. 2015;347(6226):1132–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kim CH, Kim B-H, Yang KS. TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon. 2012;50(7):2472–81.

    Article  CAS  Google Scholar 

  52. Lin A, Liu Q, Zhang Y, Wang Q, Li S, Zhu B, Miao L, Du Y, Zhao S, Wei H. A dopamine-enabled universal assay for catalase and catalase-like nanozymes. Anal Chem. 2022;94(30):10636–42.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng D, He Y, Hu N, Wang H. Synthesis and characterization of dopamine-modified Ca-alginate/poly(N-isopropylacrylamide) microspheres for water retention and multi-responsive controlled release of agrochemicals. Int J Biol Macromol. 2020;160:518–30.

    Article  CAS  PubMed  Google Scholar 

  54. Qiang W, Li W, Li X, Chen X, Xu D. Bioinspired polydopamine nanospheres: A superquencher for fluorescence sensing of biomolecules. Chem Sci. 2014;5(8):3018–24.

    Article  CAS  Google Scholar 

  55. Liu C, Wang D, Zhang S, Cheng Y, Yang F, Xing Y, Xu T, Dong H, Zhang X. Biodegradable biomimic copper/manganese silicate nanospheres for chemodynamic/photodynamic synergistic therapy with simultaneous glutathione depletion and hypoxia relief. ACS Nano. 2019;13(4):4267–77.

    Article  CAS  PubMed  Google Scholar 

  56. Wan X, Song L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano. 2020;14(9):11017–28.

    Article  CAS  PubMed  Google Scholar 

  57. Fu LH, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater. 2021;33(7): e2006892.

    Article  PubMed  Google Scholar 

  58. Chen TL, Weng HS. A method for the determinations of the activity and optimal pH of glucose oxidase in an unbuffered solution. Biotechnol Bioeng. 1986;28(1):107–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (22176080) and SRT Program of University of Jinan (Yuhao Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfeng Gao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Y. & Gao, Z. Polydopamine-Based Colorimetric Superwettable Biosensor for Highly Sensitive Detection of Hydrogen Peroxide and Glucose. J. Anal. Test. 7, 118–127 (2023). https://doi.org/10.1007/s41664-023-00252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00252-4

Keywords

Navigation