Skip to main content
Log in

Bacterial Sample Concentration and Culture Monitoring Using a PEG-Based Osmotic System with Inline Impedance and Voltammetry Measurements

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Impedance measurements using graphite electrodes were used to detect the increase in culture medium conductivity due to bacteria growth in real time along with simultaneous voltammetric monitoring of pyocyanin concentration. Electrochemical methods were compared to conventional continuous monitoring of bacterial cultures using turbidity measurement at an optical density of 600 nm (OD600). A practical osmotic system was further designed for concentrating bacterial cultures during growth to enable earlier detection using the electrochemical methods. Bacterial cultures, starting from an initial culture density of 1 × 108 cells/mL, were grown inside a sealed cellulose ester dialysis membrane, while polyethylene glycol in LB medium was used as the draw solution outside the membrane to gradually concentrate the growing cultures. 0.7-mm-diameter graphite for mechanical pencils was utilized as working and counter electrodes with a platinum wire reference electrode for electrochemical measurements with and without the osmotic system. In the absence of forward osmosis, impedance measurements detected culture growth ~ 1 h faster than conventional OD600. Integrating osmosis showed a twofold decrease in the time to detect pyocyanin production as an indicator for bacterial growth. For impedance monitoring, removal of water by osmosis was conflated with the impedance decrease due to cell growth; however, the results show a promising ability to detect bacteria growth via an observed shift in osmotic impedance profile when bacteria are present in a sample. By monitoring the deviation in the impedance profile, a threefold improvement in detection time was achieved when compared to conventional OD600 measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heo J, Hua SZ. An overview of recent strategies in pathogen sensing. Sensors (Switzerland). 2009;9:4483–502.

    Article  CAS  Google Scholar 

  2. Wang H, Bedard E, Prevost M, et al. Methodological approaches for monitoring opportunistic pathogens in premise plumbing: a review. Water Res. 2017;117:68–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bereket W, Hemalatha K, Getenet B, et al. Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci. 2012;16:1039–44.

    CAS  PubMed  Google Scholar 

  4. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther J. 2015;40(4):277.

    Google Scholar 

  5. Caliendo AM, Gilbert DN, Ginocchio CC, et al. Better tests, better care: improved diagnostics for infectious diseases. Clin Infect Dis. 2013;57:S139–70. https://doi.org/10.1093/cid/cit578.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Frieden T. Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention; 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

  7. Karlowsky JA, Draghi DC, Jones ME, et al. Surveillance for antimicrobial susceptibility among clinical isolates of Pseudomonas aeruginosa and Acinetobacter baumannii from hospitalized patients in the United States, 1998 to 2001. Antimicrob Agents Chemother. 2003;47:1681–8. https://doi.org/10.1128/AAC.47.5.1681-1688.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. CDC. Gram-negative bacteria infections in healthcare settings. Centres for Disease Control and Prevention; 2011. https://www.cdc.gov/HAI/organisms/gran-negative-bacteria.html. Accessed 14 Dec 2018.

  9. Foweraker JE, Laughton CR, Brown DFJ, Bilton D. Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing. J Antimicrob Chemother. 2005;55:921–7. https://doi.org/10.1093/jac/dki146.

    Article  CAS  PubMed  Google Scholar 

  10. Burns JL, Saiman L, Whittier S, et al. Comparison of agar diffusion methodologies for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Clin Microbiol. 2000;38:1818–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wanger, A. Antibiotic susceptibility testing. In: Practical handbook of microbiology, 3rd ed. 2015.

  12. Kerremans JJ, Verboom P, Stijnen T, et al. Rapid identification and antimicrobial susceptibility testing reduce antibiotic use and accelerate pathogen-directed antibiotic use. J Antimicrob Chemother. 2008;61:428–35. https://doi.org/10.1093/jac/dkm497.

    Article  CAS  PubMed  Google Scholar 

  13. Kassim A, Omuse G, Premji Z, Revathi G. Comparison of Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines for the interpretation of antibiotic susceptibility at a University Teaching Hospital in Nairobi, Kenya: a cross-sectional stud. Ann Clin Microbiol Antimicrob. 2016;11:15–21. https://doi.org/10.1186/s12941-016-0135-3.

    Article  CAS  Google Scholar 

  14. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 27th ed. CLSI supplement M100. Wayne: Clinical and Laboratory Standards Institute; 2017.

  15. European Committee on Antimicrobial. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters/EUCAST; 2017.

  16. Lambert RJW, Pearson J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol. 2000;88:784–90. https://doi.org/10.1046/j.1365-2672.2000.01017.x.

    Article  CAS  PubMed  Google Scholar 

  17. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49:1749–55. https://doi.org/10.1086/647952.

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv. 2008;26:135–50. https://doi.org/10.1016/j.biotechadv.2007.10.003.

    Article  CAS  PubMed  Google Scholar 

  19. Oziat J, Elsen S, Owens RM, et al. Electrochemistry provides a simple way to monitor Pseudomonas aeruginosa metabolites. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS; 2015.

  20. Santiveri CR, Sismaet HJ, Kimani M, Goluch ED. Electrochemical detection of Pseudomonas aeruginosa in polymicrobial environments. ChemistrySelect. 2018;3:2926–30. https://doi.org/10.1002/slct.201800569.

    Article  CAS  Google Scholar 

  21. Buzid A, Shang F, Reen FJ, et al. Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci Rep. 2016;6:30001. https://doi.org/10.1038/srep30001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wawerla M, Stolle A, Schalch B, Eisgruber H. Impedance microbiology: applications in food hygiene. J Food Prot. 1999;62:1488–96. https://doi.org/10.4315/0362-028X-62.12.1488.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng X, Liu YS, Irimia D, et al. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip. 2007;7:746–55. https://doi.org/10.1039/b705082h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silley P, Forsythie S. Impedance microbiology-a rapid change for microbiologists. J Appl Bacteriol. 1996;80:233–43. https://doi.org/10.1111/j.1365-2672.1996.tb03215.x.

    Article  CAS  PubMed  Google Scholar 

  25. Yang L, Li Y. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation. J Microbiol Methods. 2006;64:9–16. https://doi.org/10.1016/j.mimet.2005.04.022.

    Article  CAS  PubMed  Google Scholar 

  26. Seviour T, Doyle LE, Lauw SJL, et al. Voltammetric profiling of redox-active metabolites expressed by Pseudomonas aeruginosa for diagnostic purposes. Chem Commun. 2015;51:3789–92. https://doi.org/10.1039/c4cc08590f.

    Article  CAS  Google Scholar 

  27. Webster TA, Sismaet HJ, Conte JL, et al. Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens Bioelectron. 2014;60:265–70. https://doi.org/10.1016/j.bios.2014.04.028.

    Article  CAS  PubMed  Google Scholar 

  28. Sismaet HJ, Goluch ED. Electrochemical probes of microbial community behavior. Annu Rev Anal Chem. 2018;11:441–61. https://doi.org/10.1146/annurev-anchem-061417-125627.

    Article  CAS  Google Scholar 

  29. Beyenal H, Chen SN, Lewandowski Z. The double substrate growth kinetics of Pseudomonas aeruginosa. Enzyme Microb Technol. 2003;32:92–8. https://doi.org/10.1016/S0141-0229(02)00246-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by award #1740961 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar D. Goluch.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimani, M.K., Mwangi, J. & Goluch, E.D. Bacterial Sample Concentration and Culture Monitoring Using a PEG-Based Osmotic System with Inline Impedance and Voltammetry Measurements. J. Anal. Test. 3, 166–174 (2019). https://doi.org/10.1007/s41664-019-00096-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00096-x

Keywords

Navigation