Skip to main content

Advertisement

Log in

Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers

  • Published:
Journal of Geovisualization and Spatial Analysis Aims and scope Submit manuscript

Abstract

This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adugna T, Xu W, Fan J (2022) Comparison of random forest and support vector machine classifiers for regional land cover mapping using coarse resolution FY-3C images. Remote Sensing 14(3):574

    Article  Google Scholar 

  • Alshari EA, Gawali BW (2021) Development of classification system for LULC using remote sensing and GIS. Glob Transit Proc 2(1):8–17

    Article  Google Scholar 

  • Aouichaty N, Bouslihim Y, Hilali S, Zouhri A, Koulali Y (2022) Estimation of water erosion in abandoned quarries sites using the combination of RUSLE model and geostatistical method. Sci Afr 16:e01153

  • Atkinson PM (2013) Downscaling in remote sensing. Int J Appl Earth Obs Geoinf 22:106–114

    Google Scholar 

  • Belgiu M, Drǎguţ L, Strobl J (2014) Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery. ISPRS J Photogramm Remote Sens 87:205–215. https://doi.org/10.1016/j.isprsjprs.2013.11.007

    Article  Google Scholar 

  • Berihun ML, Tsunekawa A, Haregeweyn N, Tsubo M, Fenta AA (2021) Changes in ecosystem service values strongly influenced by human activities in contrasting agro-ecological environments. Ecol Process 10(1):1–18

    Article  Google Scholar 

  • Bouslihim Y, Rochdi A, Paaza NEA (2021) Machine learning approaches for the prediction of soil aggregate stability. Heliyon 7(3):e06480

    Article  Google Scholar 

  • Bouslihim Y, Rochdi A, Aboutayeb R, El Amrani-Paaza N, Miftah A, Hssaini L (2021) Soil aggregate stability mapping using remote sensing and GIS-based machine learning technique. Front Earth Sci 9:1–13

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Crabbe RA, Lamb D, Edwards C (2020) Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data. Int J Appl Earth Obs Geoinf 84:101978

    Google Scholar 

  • Du P, Bai X, Tan K, Xue Z, Samat A, Xia J, Liu W (2020) Advances of four machine learning methods for spatial data handling: a review. J Geovisualization Spat Anal 4(1):1–25

    Google Scholar 

  • Forkuor G, Dimobe K, Serme I, Tondoh JE (2018) Landsat-8 vs. Sentinel-2: examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience remote sens 55(3):331–354

    Article  Google Scholar 

  • Fu B, Liu M, He H, Lan F, He X, Liu L, Huang L, Fan D, Zhao M, Jia Z (2021) Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int J Appl Earth Obs Geoinf 104:102553

    Google Scholar 

  • Georganos S, Grippa T, Lennert M, Vanhuysse S, Johnson BA, Wolff E (2018) Scale matters: spatially partitioned unsupervised segmentation parameter optimization for large and heterogeneous satellite images. Remote Sens 10(9):1440

    Article  Google Scholar 

  • Ghasemloo N, Matkan AA, Alimohammadi A, Aghighi H, Mirbagheri B (2022) Estimating the agricultural farm soil moisture using spectral indices of Landsat 8, and Sentinel-1, and artificial neural networks. J Geovisualization Spat Anal 6(2):1–12

    Google Scholar 

  • Ghayour L, Neshat A, Paryani S, Shahabi H, Shirzadi A, Chen W, Al-Ansari N, Geertsema M, Pourmehdi Amiri M, Gholamnia M, Dou J, Ahmad A (2021) Performance evaluation of Sentinel-2 and Landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sens 13(7):1349

    Article  Google Scholar 

  • Gillespie AR, Kahle AB, Walker RE (1987) Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques. Remote Sens Environ 22(3):343–365

    Article  Google Scholar 

  • Goel RK, Yadav CS, Vishnoi S, Rastogi R (2021) Smart agriculture–urgent need of the day in developing countries. Sustain Comput: Informa Syst 30:100512

    Google Scholar 

  • Hargreaves PK, Watmough GR (2021) Satellite Earth observation to support sustainable rural development. Int J Appl Earth Obs Geoinf 103:102466

    Google Scholar 

  • Htitiou A, Boudhar A, Lebrini Y, Hadria R, Lionboui H, Elmansouri L, Tychon B, Benabdelouahab T (2019) The performance of random forest classification based on phenological metrics derived from Sentinel-2 and Landsat 8 to map crop cover in an irrigated semi-arid region. Remote Sens Earth Syst Sci 2(4):208–224

    Article  Google Scholar 

  • Huyck C, Verrucci E, Bevington J (2014) Remote sensing for disaster response. In: Shroder JF, Wyss M (eds) Earthquake hazard, risk and disasters. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-394848-9.00001-8

  • Ibrahim E, Barnabé P, Ramanaidou E, Pirard E (2018) Mapping mineral chemistry of a lateritic outcrop in new Caledonia through generalized regression using Sentinel-2 and field reflectance spectra. Int J Appl Earth Obs Geoinf 73:653–665

    Google Scholar 

  • Immitzer M, Vuolo F, Atzberger C (2016) First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens 8(3):166. https://doi.org/10.3390/rs8030166

    Article  Google Scholar 

  • John K, Bouslihim Y, Bouasria A, Razouk R, Hssaini L, Isong IA, Ait M’barek S, Ayito EO, Ambrose-Igho G (2022) Assessing the impact of sampling strategy in random forest-based predicting of soil nutrients: a study case from Northern Morocco. Geocarto Int 1–14. https://doi.org/10.1080/10106049.2022.2048091

  • Johnson BA, Tateishi R, Hoan NT (2012) Satellite image pansharpening using a hybrid approach for object-based image analysis. ISPRS Int J Geo Inf 1(3):228–241

    Article  Google Scholar 

  • Kala AK, Kumar M (2022) Role of geospatial technologies in natural resource management. In: Climate impacts on sustainable natural resource management. Wiley Blackwell, Chichester

  • Karan SK, Samadder SR (2018) A comparison of different land-use classification techniques for accurate monitoring of degraded coal-mining areas. Environ Earth Sci 77(20):1–15

    Article  Google Scholar 

  • Kollert A, Bremer M, Löw M, Rutzinger M (2021) Exploring the potential of land surface phenology and seasonal cloud free composites of one year of Sentinel-2 imagery for tree species mapping in a mountainous region. Int J Appl Earth Obs Geoinf 94:102208

    Google Scholar 

  • Lary DJ, Zewdie GK, Liu X et al (2018) Machine learning applications for earth observation. Earth observation open science and innovation. Springer, Cham, pp 165–218. https://doi.org/10.1007/978-3-319-65633-5

  • Liu JG, Moore JM (1998) Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery. Int J Remote Sens 19(13):2477–2491

    Article  Google Scholar 

  • Meyer D, Wien FT (2015) Support vector machines. Interface libsvm packag e1071:28

    Google Scholar 

  • Montalván-Burbano N, Velastegui-Montoya A, Gurumendi-Noriega M, Morante-Carballo F, Adami M (2021) Worldwide research on land use and land cover in the Amazon Region. Sustainability 13(11):6039

    Article  Google Scholar 

  • Nagne AD, Vibhute AD, Dhumal RK, Kale KV, Mehrotra SC (2019) Urban LULC change detection and mapping spatial variations of Aurangabad City using IRS LISS-III Temporal datasets and supervised classification approach. Data Analytics and Learning 43:369–386. https://doi.org/10.1007/978-981-13-2514-4_31

  • Nyamekye C, Ghansah B, Agyapong E, Obuobie E, Awuah A, Kwofie S (2021) Examining the performances of true color RGB bands from Landsat-8, Sentinel-2 and UAV as stand-alone data for mapping artisanal and small-scale mining (ASM). Remote Sens Appl: Soc Environ 24:100655

    Google Scholar 

  • Rahman A, Abdullah HM, Tanzir MT, Hossain MJ, Khan BM, Miah MG, Islam I (2020) Performance of different machine learning algorithms on satellite image classification in rural and urban setup. Remote Sens Appl: Soc Environ 20:100410

    Google Scholar 

  • Ramoelo A, Cho M, Mathieu R, Skidmore AK (2015) Potential of Sentinel-2 spectral configuration to assess rangeland quality. J Appl Remote Sens 9(1):094096

    Article  Google Scholar 

  • Rana VK, Suryanarayana TMV (2020) Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sens Appl: Soc Environ 19:100351

    Google Scholar 

  • Shaharum NSN, Shafri HZM, Gambo J, Abidin FAZ (2018) Mapping of Krau Wildlife Reserve (KWR) protected area using Landsat 8 and supervised classification algorithms. Remote Sens Appl: Soc Environ 10:24–35

    Google Scholar 

  • Sonobe R, Yamaya Y, Tani H, Wang X, Kobayashi N, Mochizuki KI (2018) Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. J Appl Remote Sens 12(2):026019

    Article  Google Scholar 

  • Talukdar S, Singha P, Mahato S, Pal S, Liou YA, Rahman A (2020) Land-use land-cover classification by machine learning classifiers for satellite observations—a review. Remote Sens 12(7):1135

    Article  Google Scholar 

  • Thanh Noi P, Kappas M (2017) Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18(1):18

    Article  Google Scholar 

  • Toosi NB, Soffianian AR, Fakheran S, Pourmanafi S, Ginzler C, Waser LT (2019) Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob Ecol Conserv 19:e00662

    Article  Google Scholar 

  • U.S. Geological Survey (2019) Landsat 9 (ver. 1.3, August 2022): U.S. Geological Survey Fact Sheet 2019–3008, 2 p. https://doi.org/10.3133/fs20193008

  • Van Leeuwen B, Tobak Z, Kovács F (2020) Machine learning techniques for land use/land cover classification of medium resolution optical satellite imagery focusing on temporary inundated areas. J Environ Geogr 13(1–2):43–52

    Article  Google Scholar 

  • Wang C, Chen Q, Fan H, Yao C, Sun X, Chan J, Deng J (2021) Evaluating satellite hyperspectral (Orbita) and multispectral (Landsat 8 and Sentinel-2) imagery for identifying cotton acreage. Int J Remote Sens 42(11):4042–4063

    Article  Google Scholar 

  • Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005) A comparative analysis of image fusion methods. IEEE Trans Geosci Remote Sens 43(6):1391–1402

    Article  Google Scholar 

  • Zhang Y (1999) A new merging method and its spectral and spatial effects. Int J Remote Sens 20(10):2003–2014

    Article  Google Scholar 

  • Zhao Y, Gong P, Yu L, Hu L, Li X, Li C, Zhang H, Zheng Y, Wang J, Zhao Y, Cheng Q, Liu C, Liu S, Wang X (2014) Towards a common validation sample set for global land-cover mapping. Int J Remote Sens 35(13):4795–4814

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Bouslihim.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any study conducted by any of the authors that would require ethical approval.

This article does not contain any studies involving human participants performed by any of the authors.

Consent for Publication

All authors have consented to submission and publication in the Journal of Geovisualization and Spatial Analysis.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouslihim, Y., Kharrou, M.H., Miftah, A. et al. Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers. J geovis spat anal 6, 35 (2022). https://doi.org/10.1007/s41651-022-00130-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41651-022-00130-0

Keywords

Navigation