Skip to main content
Log in

The methods of thermal field theory for degenerate quantum plasmas in astrophysical compact objects

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

In the study of degenerate plasmas contained within compact astrophysical objects, both special relativity and general relativity play important roles. After reviewing the existing treatment in the literature, here we employ the methods of relativistic thermal quantum field theory to compute the equation of states of degenerate matter for compact astrophysical objects such as the white dwarfs and the neutron stars. In particular, we compute the equation of states that include leading order corrections due to the finite temperature, the fine-structure constant as well as the effect of gravitational time dilation. We show that the fine-structure constant correction remains well-defined even in the non-relativistic regime in contrast to the existing treatment in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • B.P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • B.P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya et al., Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  • I. Akhiezer, S. Peletminskii, Zh. Eksp, Teor. Fiz. 11, 1316 (1960)

    Google Scholar 

  • F. Auluck, V. Mathur, Zeitschrift fur Astrophysik 48, 28 (1959)

    ADS  Google Scholar 

  • S.M. de Carvalho, M. Rotondo, J.A. Rueda, R. Ruffini, Phys. Rev. C 89, 015801 (2014)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, Astrophys. J. 74, 81 (1931)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, Mon. Not. R. Astron. Soc. 95, 207 (1935)

    Article  ADS  Google Scholar 

  • K. Chatziioannou, Neutron-star tidal deformability and equation-of-state constraints. Gen. Relativ. Gravit. 52(11), 1–49 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • H.T. Cromartie, E. Fonseca, S.M. Ransom, P.B. Demorest, Z. Arzoumanian, H. Blumer, P.R. Brook, M.E. DeCesar, T. Dolch, J.A. Ellis et al., Nat. Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  • D. Kothari, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1938). p. 486–500

  • R. Fantoni, J. Stat. Mech. 1711, 113101 (2017). arXiv:1709.06064

    Article  Google Scholar 

  • B.A. Freedman, L.D. McLerran, Phys. Rev. D 16, 1147 (1977)

    Article  ADS  Google Scholar 

  • J. Frenkel, Z. Angew. Phys. 50, 234–248 (1928)

    Google Scholar 

  • G.M. Hossain, S. Mandal, Higher mass limits of neutron stars from the equation of states in curved spacetime (2021). arXiv:2109.09606

  • G.M. Hossain, S. Mandal (2019). arXiv:1904.09779

  • T. Hamada, E. Salpeter, Astrophys. J. 134, 683 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • W.-B. Han, X.-L. Fan, Astrophys. J. 856, 82 (2018). arXiv:1711.08628

    Article  ADS  Google Scholar 

  • G.M. Hossain, S. Mandal, J. Cosmol. Astropart. Phys. 2021, 026 (2021)

    Article  Google Scholar 

  • R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  • C.G. Joseph, I. Kapusta, Finite-temperature field theory: principles and applications, Cambridge monographs on mathematical physics, 2nd edn. (Cambridge University Press, 2006)

    Google Scholar 

  • S.R.G. Joyce, M.A. Barstow, J.B. Holberg, H.E. Bond, S.L. Casewell, M.R. Burleigh, Mon. Not. R. Astron. Soc. 481, 2361 (2018). arXiv:1809.01240

    Article  ADS  Google Scholar 

  • T. Katayama, T. Miyatsu, K. Saito, Astrophys. J. Suppl. Ser. 203, 22 (2012)

    Article  ADS  Google Scholar 

  • D. Koester, G. Chanmugam, Rep. Prog. Phys. 53, 837 (1990)

    Article  ADS  Google Scholar 

  • A. Kovetz, G. Shaviv, Astron. Astrophys. 8, 398 (1970)

    ADS  Google Scholar 

  • B.D. Lackey, M. Nayyar, B.J. Owen, Observational constraints on hyperons in neutron stars. Phys. Rev. D 73(2), 024021 (2006)

    Article  ADS  Google Scholar 

  • M. Linares, T. Shahbaz, J. Casares, Astrophys. J. 859, 54 (2018)

    Article  ADS  Google Scholar 

  • T. Matsubara, Prog. Theor. Phys. 14, 351 (1955)

    Article  ADS  Google Scholar 

  • T. Miyatsu, S. Yamamuro, K. Nakazato, Astrophys. J. 777, 4 (2013)

    Article  ADS  Google Scholar 

  • V.P. Nair, Quantum field theory: a modern perspective. graduate texts in contemporary physics, 1st edn. (Springer, Berlin, 2005)

    Google Scholar 

  • M. Nauenberg, Astrophys. J. 175, 417 (1972)

    Article  ADS  Google Scholar 

  • M. Rotondo, J.A. Rueda, R. Ruffini, S.-S. Xue, Phys. Rev. C 83, 045805 (2011)

    Article  ADS  Google Scholar 

  • M. Rotondo, J.A. Rueda, R. Ruffini, S.-S. Xue, Phys. Rev. D 84, 084007 (2011)

    Article  ADS  Google Scholar 

  • E.E. Salpeter, Astrophys. J. 134, 669 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  • B.D. Serot, Rep. Prog. Phys. 55, 1855 (1992)

    Article  ADS  Google Scholar 

  • B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997)

    Article  ADS  Google Scholar 

  • D. Shaddock, Space-based gravitational wave detection with lisa. Class. Quantum Gravity 25(11), 114012 (2008)

    Article  ADS  MATH  Google Scholar 

  • G. Shaviv, A. Kovetz, Astron. Astrophys. 16, 72 (1972)

    ADS  Google Scholar 

  • S.A.T. Stuart, L. Shapiro, Black holes, white dwarfs, and neutron stars: the physics of compact objects, 1st edn. (Wiley, 1983)

    Google Scholar 

  • K. Takami, L. Rezzolla, L. Baiotti, Constraining the equation of state of neutron stars from binary mergers. Phys. Rev. Lett. 113(9), 091104 (2014)

    Article  ADS  Google Scholar 

  • J.H. Taylor, J.M. Weisberg, Further experimental tests of relativistic gravity using the binary pulsar psr 1913+ 16. Astrophys. J. 345, 434–450 (1989)

    Article  ADS  Google Scholar 

  • S. Weinberg, Quantum theory of fields. Foundations, 1st edn. (Cambridge University Press, 1995)

    Book  Google Scholar 

  • D. Whittenbury, J. Carroll, A. Thomas, K. Tsushima, J. Stone, Phys. Rev. C 89, 065801 (2014)

    Article  ADS  Google Scholar 

  • N.B. Zhang, B.A. Li, Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves. Eur. Phys. J. A 55(3), 1–23 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

SM would like to thank IISER Kolkata for supporting this work through a doctoral fellowship. This review is an extended version of the pre-print arXiv:1904.09174. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Golam Mortuza Hossain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, G.M., Mandal, S. The methods of thermal field theory for degenerate quantum plasmas in astrophysical compact objects. Rev. Mod. Plasma Phys. 6, 1 (2022). https://doi.org/10.1007/s41614-021-00062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-021-00062-0

Keywords

Navigation