Skip to main content

Advertisement

Log in

Reconstructing hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study

  • Research Article
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Purpose

Dinosaur fossil skeletons are rarely found complete and from a single individual. Most findings include remains from several individuals of different sizes and ontogenetic stages. Although many skeletal models have been produced from various specimens, such as 2D drawings, physical mounts or 3D virtual models, the detailed techniques employed in their crafting have not been always published. Our main goal is to describe a thorough methodology to elaborate a 3D reconstruction of a caudal vertebral series from different sized specimens and discuss the main caveats.

Methods

Here we propose a hypothetical reconstruction of the tail of the titanosaurian sauropod Lirainosaurus astibiae to assess its neutral posture and range of motion thanks to a virtual 3D skeletal mount. We use 3D models obtained by photogrammetry of the vertebrae. 3D specimens allow an easy access, study and visualization of the specimens minimizing manipulation of fragile and/or heavy originals, greatly helping in their conservation. A step-by-step protocol on virtual retrodeformation for vertebral series and the criteria employed are devised. The retrodeformed 3D models are articulated and analyzed on CAD (Computer Aided Design) software, allowing an accurate study of skeletal ranges of motion.

Results

The resulting virtual tail has a osteological neutral pose similar to other titanosaurs. Slightly different vertebral morphologies hint at a slight regionalization of the tail in terms of motion.

Conclusions

The proposed methodology will help reconstructing the incomplete or poorly preserved tails of other sauropod taxa, being a helpful tool to compare the biomechanics within this clade.

Resumen

Propósito

Los esqueletos casi completos de un único individuo de dinosaurio son escasos. La mayoría de hallazgos corresponden a individuos incompletos de distinto tamaño y estadío ontogenético. Aunque se han creado numerosos modelos de esqueletos (dibujos 2D, montajes a tamaño real o esqueletos virtuales) mediante varios individuos, las técnicas empleadas no han sido siempre completamente detalladas en publicaciones. Nuestro propósito es describir una metodología detallada para elaborar una reconstrucción 3D del esqueleto caudal mediante ejemplares de diferente tamaño y discutir las principales precauciones a tener en cuenta.

Métodos

Proponemos una reconstrucción hipotética de la cola del saurópodo titanosaurio Lirainosaurus astibiae para analizar su postura neutra y rango de movimiento mediante un montaje virtual del esqueleto. Para ello hemos utilizado modelos 3D obtenidos mediante fotogrametría de las vértebras. Estos ejemplares permiten una visualización y estudio más sencillos, minimizando la manipulación de los originales, que suelen ser frágiles y/o pesados, ayudando en su conservación. Se proponen un protocolo pormenorizado y criterios para retrodeformar una serie vertebral. Los modelos 3D retrodeformados se articulan y analizan en software CAD (Diseño Asistido por Ordenador), permitiendo un estudio preciso del rango de movimiento.

Results

La cola virtual tiene una postura osteológica neutra similar a otros titanosaurios. Ligeras diferencias en la morfología vertebral sugieren una pequeña regionalización en la cola en términos de movimiento.

Conclusiones

La metodología propuesta será de ayuda para reconstruir colas incompletas o mal preservadas de otros saurópodos, siendo una herramienta de gran ayuda para comparar la biomecánica entre distintos miembros de este clado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arbour, V. M., & Currie, P. J. (2012). Analyzing taphonomic deformation of ankylosaur skulls using retrodeformation and finite element analysis. PLoS ONE. doi:10.1371/journal.pone.0039323.

    Google Scholar 

  • Bates, K. T., Mannion, P. D., Falkingham, P. L., Brusatte, S. L., Hutchinson, J. R., Otero, A., et al. (2016). Temporal and phylogenetic evolution of the sauropod dinosaur body plan. Royal Society Open Scienc, 3, 150636. doi:10.1098/rsos.150636.

    Article  Google Scholar 

  • Borsuk-bialynicka, M. (1977). A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia. Paleontologia Polonica, 37, 5–64.

    Google Scholar 

  • Breithaupt, B. H., Matthews, N., & Noble, T. (2004). An integrated approach to three-dimensional data collection at dinosaur tracksites in the Rocky Mountain West. Ichnos, 11, 11–26.

    Article  Google Scholar 

  • Cambra Moo, O. (2006). Biostratinomía y Fosildiagénesis de Arcosaurios: Aplicación de la Actuotafonomía al estudio de la influencia paleobiológica en el proceso tafonómico. Universidad Autónoma de Madrid

  • Corral, J. C., Pueyo, E., Berreteaga, A., Rodríguez-Pintó, A., Sánchez, E., & Pereda-Suberbiola, X. (2016). Magnetostratigraphy and lithostratigraphy of the Laño vertebrate-site: Implications in the uppermost Cretaceous chronostratigraphy of the Basque-Cantabrian Region. Cretaceous Research, 57, 473–489.

    Article  Google Scholar 

  • Díez Díaz, V., Mallison, H., & Schwarz, D. (2016). How did Giraffatitan shake its tail? Studying sauropod biomechanics via 3D modeling techniques. Journal of Vertebrate Paleontology, Program and Abstracts, Seventy-fifth Annual Meeting, 126.

  • Díez Díaz, V., Pereda Suberbiola, X., & Sanz, J. L. (2011). Braincase anatomy of the sauropod dinosaur Lirainosaurus astibiae (Titanosauria) from the Late Cretaceous of the Iberian Peninsula. Acta Paleontologica Polonica, 56, 521–533.

    Article  Google Scholar 

  • Díez Díaz, V., Pereda Suberbiola, X., & Sanz, J. L. (2012). Juvenile and adult teeth of the titanosaurian dinosaur Lirainosaurus (Sauropoda) from the Late Cretaceous of Iberia. Geobios, 45, 265–274.

    Article  Google Scholar 

  • Díez Díaz, V., Pereda Suberbiola, X., & Sanz, J. L. (2013a). The axial skeleton of the titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from the latest Cretaceous of Spain. Cretaceous Research, 43, 145–160.

    Article  Google Scholar 

  • Díez Díaz, V., Pereda Suberbiola, X., & Sanz, J. L. (2013b). Appendicular skeleton and dermal armour of the Late Cretaceous titanosaur Lirainosaurus astibiae (Dinosauria: Sauropoda) from Spain. Palaeontologia Electronica, 16(2), 19A.

    Google Scholar 

  • Díez Díaz, V., Pereda Suberbiola, X., & Company, J. (2015). Updating titanosaurian diversity (Sauropoda) from the Late Cretaceous of Spain: the fossil sites of Laño and Chera. Spanish Journal of Paleontology 30(2), 293–306.

    Google Scholar 

  • Falkingham, P. L. (2012). Acquisition of high resolution 3D models using free, open-source, photogrammetric software. Palaeontologia Electronica, 15(1), 15.

    Google Scholar 

  • Fronimos, J. A., Wilson, J. A., & Baumiller, T. K. (2016). Polarity of concavo-convex intervertebral joints in the necks and tails of sauropod dinosaurs. Paleobiology. doi:10.1017/pab.2016.16.

    Google Scholar 

  • Gilmore, C. W. (1932). On a newly mounted skeleton of Diplodocus in the United States National Museum. Proceedings of the United States National Museum, 81, 1–21.

    Article  Google Scholar 

  • Gilmore, C. W. (1946). Reptilian fauna of the North Horn Formation of central Utah. U.S. Geological Survey Professional Paper, 210, 29–53.

    Google Scholar 

  • Gomani, E. M. (2005). Sauropod dinosaurs from the early cretaceous of Malawi, Africa. Palaeontologia Electronica, 8, 1–37.

    Google Scholar 

  • Hatcher, J. B. (1901). Diplodocus (Marsh): Its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum, 1, 1–63.

    Google Scholar 

  • Holland, W. J. (1905). The presentation of a reproduction of Diplodocus carnefiei to the trustees of the British Museum. Annals of the Carnegie Museum 3, 442–452.

    Google Scholar 

  • Holland, W. J. (1906). The Osteology of Diplodocus Marsh. Memoirs of the Carnegie Museum 2, 223–278.

    Google Scholar 

  • Hutchinson, J., Anderson, F., Blemker, S., & Delp, S. L. (2005). Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: Implications for stance, gait, and speed. Paleobiology, 31, 373–701.

    Article  Google Scholar 

  • Hutchinson, J. R., Bates, K. T., Molnar, J., Allen, V., & Makovicky, P. J. (2011). A computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS ONE, 6, e26037. doi:10.1371/journal.pone.0026037.

    Article  Google Scholar 

  • Hutchinson, J. R., & Garcia, M. (2002). Tyrannosaurus was not a fast runner. Nature, 415, 1018–1021.

    Article  Google Scholar 

  • Janensch, W. (1950). Die Skelettrekonstruktion von Brachiosaurus brancai. Palaeontographica, Supplement 7 (I, 3), 97–103.

  • Kellner, W., Campos, D., & Trotta, M. N. F. (2005). Description of a titanosaurid caudal series from the Bauru Group, Late Cretaceous of Brazil. Arquivos Do Museu Nacional, Rio de Janeiro, 63, 529–564.

    Google Scholar 

  • Klinkhamer, A.J., Wilhite,  D.R., White, M.A., Wroe, S., & Claessens, L. (2017). Digital dissection and three-dimensional interactive models of limb musculature in the Australian estuarine crocodile (Crocodylus porosus). PLOS ONE 12(4), e0175079.

    Article  Google Scholar 

  • Lacovara, K. J., Lamanna, M. C., Ibiricu, L. M., Poole, J. C., Schroeter, E. R., Ullmann, P. V., et al. (2014). A gigantic, exceptionally complete titanosaurian sauropod dinosaur from southern Patagonia, Argentina. Scientific Reports, 4, 6196. doi:10.1038/srep06196.

    Article  Google Scholar 

  • Lautenschlager, S. (2016). Reconstructing the past: Methods and techniques for the digital restoration of fossils. Royal Society Open Science. doi:10.1098/rsos.160342.

    Google Scholar 

  • López Piñero, J. M. (1988). Juan Bautista Bru (1740–1799) and the description of the genus Megatherium. Journal of the History of Biology, 21, 147–163.

    Article  Google Scholar 

  • Mallison, H. (2010a). The digital plateosaurus I: Body mass, mass distribution and posture assessed using CAD and CAE on a digitally mounted complete skeleton. Palaeontologia Electronica, 2, 1–26.

    Google Scholar 

  • Mallison, H. (2010b). CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915. Swiss Journal of Geosciences, 103, 211–233.

    Article  Google Scholar 

  • Mallison, H. (2010c). The Digital Plateosaurus II: An assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount. Acta Palaeontologica Polonica, 55, 433–458.

    Article  Google Scholar 

  • Mallison, H. (2011). Defense capabilities of Kentrosaurus aethiopicus Hennig, 1915. Palaeontologia Electronica, 14, 25p.

    Google Scholar 

  • Mallison, H., & Wings, O. (2014). Photogrammetry in paleontology—A practical guide. Journal of Paleontological Techniques, 12, 1–31.

    Google Scholar 

  • Mannion, P. D., & Calvo, J. O. (2011). Anatomy of the basal titanosaur (Dinosauria, Sauropoda) Andesaurus delgadoi from the mid-Cretaceous (Albian-early Cenomanian) Río Limay Formation, Neuquén Province, Argentina: Implications for titanosaur systematics. Zoological Journal of the Linnean Society, 163, 155–181.

    Google Scholar 

  • Matthews, N.A., Breithaupt, B.H., Noble, T., Titus, A., & Smith, J. (2005). A geospatial look at the morphological variation of tracks at the Twentymile Wash dinosaur tracksite, Grand Staircase-Escalante National Monument, Utah. Journal of Vertebrate Paleontology, 25(Supplement to No. 3): 90A.

  • Matthews, N. A., Noble, T. A., & Breithaupt, B. H. (2006). The application of photogrammetry, remote sensing and geographic information systems (GIS) to fossil resource management. Bulletin New Mexico Museum of Natural History and Science, 34, 119–131.

    Google Scholar 

  • Myhrvold, N. P., & Currie, P. J. (1999). Supersonic sauropods? Tail dynamics in the diplodocids. Paleobiology, 23, 393–409.

    Article  Google Scholar 

  • Paul, G. S., & Chase, T. L. (1989). Reconstructing extinct vertebrates. In E. R. S. Hodges (Ed.), The guild handbook of scientific illustration (pp. 239–256). New York: Van Nostrand.

    Google Scholar 

  • Reiss, S., & Mallison, H. (2014). Motion range of the manus of Plateosaurus engelhardti von Meyer, 1837. Paleontologica Electronica, 17, 1–19.

    Google Scholar 

  • Sanz, J. L., Powell, J. E., Le Loeuff, J., Martinez, R., & Pereda-Suberbiola, X. (1999). Sauropod remains from the Upper Cretaceous of Laño (north central Spain). Titanosaur phylogenetic relationships. Estudios Del Museo de Ciencias Naturales de Alava 14, 235–255.

    Google Scholar 

  • Stevens, K. A. (2013). The articulation of sauropod necks: methodology and mythology. PLoS ONE, 8, e78572. doi:10.1371/journal.pone.0078572.

    Article  Google Scholar 

  • Stevens, K. A., & Parrish, M. J. (1999). Neck posture and feeding habits of two jurassic sauropod dinosaurs. Science, 284, 798–800.

    Article  Google Scholar 

  • Sutton, M. D., Rahman, I. A., & R., Garwood, J. (2014). Techniques for Virtual Palaeontology. Wiley. pp. 1–200.

  • Tallman, M., Amenta, N., Delson, E., Frost, S. R., Ghosh, D., Klukkert, Z. S., Morrow, A., & Sawyer, G. J. (2014). Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: Crania of papionins (primates, cercopithecidae) as a test case. PLoS ONE 9(7), e100833.

    Article  Google Scholar 

  • Taylor, M. P. (2015). Almost all known sauropod necks are incomplete and distorted. PeerJ, pp. 1–19, doi:10.7287/peerj.preprints.1418v1.

  • Tschopp, E., Russo, J., & Dzemski, G. (2013). Retrodeformation as a test for the validity of phylogenetic characters: An example from diplodocid sauropod vertebrae. Paleontologia Electronica, 16, 1–23.

    Google Scholar 

  • Wedel, M. J. (2003a). Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology, 29, 243–255.

    Article  Google Scholar 

  • Wedel, M. J. (2003b). The evolution of vertebral pneumaticity in sauropod dinosaurs. Journal of Vertebrate Paleontology, 23, 344–357.

    Article  Google Scholar 

  • Wilson, J. A. (2006). An overview of titanosaur evolution and phylogeny. Actas de Las III Jornadas Internacionales Sobre Paleontologia de Dinosaurios Y Su Entorno, 169, e190.

    Google Scholar 

  • Xing, L., Yong, Y., Chunkang, S., Guangzhao, P., & Hailu, Y. (2009). Structure, orientation and finite element analysis of the tail club of Mamenchisaurus hochuanensis. Acta Geologica Sinica, 83, 1031–1040.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Alonso and J.C. Corral (Museo de Ciencias Naturales de Vitoria, Spain) and X. Pereda Suberbiola (Universidad del País Vasco/Euskal Herriko Unibertsitatea, Spain) for the access to the Lirainosaurus astibiae specimens; and H. Mallison (Museum für Naturkunde of Berlin, Germany) for his inestimable help in the photogrammetry and biomechanical part of this work. We would like to thank Ben Miller for sharing his knowledge on classical mounts and bibliography. P. Falkingham (Liverpool John Moores University, UK) and J. Fortuny (Institut Català de Paleontologia Miquel Crusafont, Cerdanyola del Vallès, Spain) are also acknowledged for their useful comments, which have helped improving this manuscript. DV is recipient of a predoctoral FPI UNED Grant (Ref. 0531174813 Y0SC001170). VDD has a postdoctoral fellowship of the Alexander von Humboldt Stiftung to develop a project about the biomechanics of the tail of several taxa within Neosauropoda, by doing photogrammetry and 3D modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vidal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, D., Díez Díaz, V. Reconstructing hypothetical sauropod tails by means of 3D digitization: Lirainosaurus astibiae as case study. J Iber Geol 43, 293–305 (2017). https://doi.org/10.1007/s41513-017-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-017-0022-6

Keywords

Palabras clave

Navigation