Skip to main content
Log in

Quadratic differentials and conformal invariants

  • Survey Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

We define a notion of conformal invariance associated with nested domains, suitable for characterizing higher-order information about mapping functions. We give an exposition of our results which yield an infinite-dimensional family of conformal invariants for nested hyperbolic simply-connected domains. Each invariant is specified by a quadratic differential which is admissible for the outer domain, and is strictly negative unless the inner domain is the outer domain minus trajectories of the quadratic differential. These invariants are furthermore monotonic. Using the aforementioned invariants, we show that one can obtain various classical estimates for bounded univalent functions, and in many cases extend them, by choosing particular quadratic differentials. We also explain the principles behind these results and their context within the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlfors, L. 1973. Conformal invariants: topics in geometric function theory. McGraw–Hill Series in Higher Mathematics, New York: McGraw-Hill Book Co.

    MATH  Google Scholar 

  • Ahlfors, L., and A. Beurling. 1950. Conformal invariants and function-theoretic null-sets. Acta Mathematica 83: 101–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Baernstein, A.I.I., and A. Solynin. 2013. Monotonicity and comparison results for conformal invariants. Revista Matematica Iberoamericana 29(1): 91–113.

    Article  MathSciNet  MATH  Google Scholar 

  • Barnard, R., P. Hadjicostas, and A. Solynin. 2005. The Poincaré metric and isoperimetric inequalities for hyperbolic polygons. Transactions of the American Mathematical Society 357(10): 3905–3932.

    Article  MathSciNet  MATH  Google Scholar 

  • De Temple, D. 1971. Generalizations of the Grunsky–Nehari inequalities. Archive for Rational Mechanics and Analysis 44(2): 93–120.

    Article  MathSciNet  MATH  Google Scholar 

  • De Temple, D., and J. Jenkins. 1977. A Loewner approach to a coefficient inequality for bounded univalent functions. Proceedings of the American Mathematical Society 65(1): 125–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubinin, V. 2014. Condenser capacities and symmetrization in geometric function theory. Translated from the Russian by N. Kruzhilin. Springer, Basel, 2014. Proceedings of the American Mathematical Society 142(11): 3865–3879.

    Article  MathSciNet  Google Scholar 

  • Duren, P. 1983. Univalent functions, 259. Grundlehren der Mathematischen Wissenschaften. New York: Springer.

    Google Scholar 

  • Duren, P., and J. Pfaltzgraff. 1999. Hyperbolic capacity and its distortion under conformal mapping. Journal of Analysis Mathematics 78: 205–218.

    MathSciNet  MATH  Google Scholar 

  • Grötzsch, H. 1928a. Über einige Extremalprobleme der konformen Abbildung. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-phys. Kl 80: 367–376.

  • Grötzsch, H. 1928b. Über einige Extremalprobleme der konformen Abbildung. II. Ber. Verh. sächs. Akad. Wiss. Leipzig, Math.-phys. Kl 80: 497–502.

  • Jenkins, J. 1958. Univalent functions and conformal mapping. Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie. Berlin: Springer.

  • Jenkins, J. 1960. On certain coefficients of univalent functions. In Analytic functions, Princeton Mathematical Series, vol. 24, 159–194. Princeton, N.J: Princeton University Press.

  • Kim, S.-A., and D. Minda. 1994. Two-point distortion theorems for univalent functions. Pacific Journal of Mathematics 163(1): 137–157.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuz’mina, G. 1980. Moduli of families of curves and quadratic differentials. A Translation of Trudy Matematicheskogo Instituta imeni VA Steklova 139: Proceedings of the Steklov Institute of Mathematics (1982): 1.

  • Lehto, O. 1987. Univalent functions and Teichmüller spaces. Graduate Texts in Mathematics, vol. 109. New York: Springer.

    Book  MATH  Google Scholar 

  • Ma, W., and D. Minda. 1997. Two-point distortion theorems for bounded univalent functions. Annales Academiae Scientiarum Fennicae Mathematica 22(2): 425–444.

    MathSciNet  MATH  Google Scholar 

  • Minda, D. 1970. Extremal length, bounds for harmonic functions and analytic arcs. Thesis: University of California at San Diego.

    Google Scholar 

  • Minda, D. 1972. Extremal length and harmonic functions on Riemann surfaces. Transactions of the American Mathematical Society 171: 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Minda, C.D., and B. Rodin. 1975. Extremal length, extremal regions and quadratic differentials. Commentarii Mathematici Helvetici 50(4): 455–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Nehari, Z. 1953. Some inequalities in the theory of functions. Transactions of the American Mathematical Society 75: 256–286.

    Article  MathSciNet  MATH  Google Scholar 

  • Pick, G. 1917. Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet. S.-B. Kaiserl. Akad. Wiss. Wien, Math.-Naturwiss. Kl 126: 247–263.

  • Pfluger, A. 1988. On the functional \(a_3 - \lambda a_2^2\)  in the class \({\cal{S}}\). Complex Variables 10: 83–95.

  • Pommerenke, Chr. 1975. Univalent functions. With a chapter on quadratic differentials by Gerd Jensen. Studia Mathematica/Mathematische Lehrbücher, Band XXV. Göttingen: Vandenhoeck & Ruprecht.

  • Roth, O. 1988. Control theory in \(H(\mathbb{D})\). Ph.D. thesis, Würzburg, Marburg: Tectum Verlag.

  • Roth, O. 2000. Pontryagin’s maximum principle in geometric function theory. Complex Variables, Theory and Application 41(4): 391–426.

    Article  MathSciNet  MATH  Google Scholar 

  • Pommerenke, Chr., and Vasil’ev, A. 2000. On bounded univalent functions and the angular derivative. Dedicated to Professor Zdzisław Lewandowski on the occasion of his seventieth birthday. Annales Universitatis Mariae Curie-Skłodowska Sectio A 54: 79–106.

  • Schaeffer, A. and Spencer, D. 1950. Coefficient regions for schlicht functions. American Mathematical Society Colloquium Publications 35. New York: American Mathematical Society.

  • Schiffer, M. 1977. Some recent developments in the theory of conformal mapping. Appendix to R. Courant, Dirichlet’s principle, conformal mapping, and minimal surfaces. Reprint of the 1950 original. New York: Springer.

  • Schippers, E. 2003a. Conformal invariants and higher-order Schwarz lemmas. Journal of Analysis Mathematics 90: 217–241.

  • Schippers, E. 2003b. Conformal invariants corresponding to pairs of domains. Future trends in geometric function theory. Reports of University of Jyväskylä - Department of Mathematics and Statistics 92: 207–219.

  • Schippers, E. 2010. The derivative of the Nehari functional. Annales Academiae Scientiarum Fennicae Mathematica 35(1): 291–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Schippers, E. 2016. Conformal invariants associated with quadratic differentials. Preprint. arXiv:1608.00790

  • Schippers, E. and Staubach, W. 2016. Comparison moduli spaces of Riemann surfaces. Preprint.

  • Tammi, O. 1978. Extremum problems for bounded univalent functions. Lecture Notes in Mathematics 646. Berlin: Springer.

  • Teichmüller, O. 1938. Ungleichungen zwischen den Koeffizienten schlichter Funktionen. Sitzgsber. preuss. Akad. Wiss.,Phys.-Math. Kl. 363–375.

  • Vasil’ev, A. 2002. Moduli of families of curves for conformal and quasiconformal mappings. Lecture Notes in Mathematics 1788. Berlin: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Schippers.

Additional information

Dedicated to David Minda on the occasion of his retirement.

The author is grateful for financial support from the Wenner–Gren Foundation and the National Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schippers, E. Quadratic differentials and conformal invariants. J Anal 24, 209–228 (2016). https://doi.org/10.1007/s41478-016-0014-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-016-0014-5

Keywords

Mathematics Subject Classification

Navigation