Skip to main content
Log in

Topological spaces of persistence modules and their properties

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

Persistence modules are a central algebraic object arising in topological data analysis. The notion of interleaving provides a natural way to measure distances between persistence modules. We consider various classes of persistence modules, including many of those that have been previously studied, and describe the relationships between them. In the cases where these classes are sets, interleaving distance induces a topology. We undertake a systematic study the resulting topological spaces and their basic topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In particular, the multiplicity of \([a_i,a_j)\) can be calculated using the inclusion/exclusion formula \({{\mathrm{rank}}}M(a_i \le a_{j-1}) - {{\mathrm{rank}}}M(a_i \le a_j) - {{\mathrm{rank}}}M(a_{i-1} \le a_{j-1}) + {{\mathrm{rank}}}M(a_{i-1} \le a_j)\) (Cohen-Steiner et al. 2007), which is an example of Möbius inversion (Patel 2018).

References

  • Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6(2), 162–191 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bauer, U., Lesnick, M.: Persistence diagrams as diagrams: a categorification of the stability theorem (2016). arXiv preprint arXiv:1610.10085

  • Bjerkevik, H.B., Botnan, M.B.: Computational complexity of the interleaving distance. In: 34th International Symposium on Computational Geometry, vol. 12 (2017). arXiv preprint arXiv:1712.04281

  • Blumberg, A.J., Lesnick, M.: Universality of the homotopy interleaving distance (2017). arXiv preprint arXiv:1705.01690

  • Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Botnan, M., Lesnick, M.: Algebraic stability of zigzag persistence modules. Algebra Geom. Topol. 18(6), 3133–3204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  • Bubenik, P., Dlotko, P.: A persistence landscapes toolbox for topological statistics. J. Symb. Comput. 78, 91–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P., Scott, J.A.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P., de Silva, V., Scott, J.: Metrics for generalized persistence modules. Found. Comput. Math. 15(6), 1501–1531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P., de Silva, V., Nanda, V.: Higher interpolation and extension for persistence modules. SIAM J. Appl. Algebra Geom. 1(1), 272–284 (2017a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bubenik, P., de Silva, V., Scott, J.: Interleaving and Gromov–Hausdorff distance and interleaving of functors (2017b). arXiv preprint arXiv:1707.06288

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chazal, F., Michel, B.: An introduction to topological data analysis: fundamental and practical aspects for data scientists (2017). arXiv preprint arXiv:1710.04019

  • Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, vol. 09, ACM, New York, NY, USA, pp. 237–246 (2009)

  • Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedic. 173, 193–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chazal, F., Crawley-Boevey, W., de Silva, V.: The observable structure of persistence modules. Homol. Homotopy Appl. 18(2), 247–265 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer Briefs in Mathematics. Springer, Cham (2016b)

    Book  MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Collins, A., Zomorodian, A., Carlsson, G., Guibas, L.J.: A barcode shape descriptor for curve point cloud data. Comput. Gr. 28(6), 881–894 (2004)

    Article  Google Scholar 

  • Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(5): 1550066, 8 (2015)

    MathSciNet  MATH  Google Scholar 

  • Curry, J.: Sheaves, cosheaves and applications. PhD Thesis, University of Pennsylvania (2014)

  • de Silva, V., Munch, E., Patel, A.: Categorified Reeb graphs. Discrete Comput. Geom. 55(4), 854–906 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • de Silva, V., Munch, E., Stefanou, A.: Theory of interleavings on \([0,\infty )\)-actegories (2017). arXiv preprint arXiv:1706.04095

  • Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Ghrist, R.: Homological algebra and data. Math. Data 25, 273 (2018)

    Article  MathSciNet  Google Scholar 

  • Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Meehan, K., Meyer, D.: Interleaving distance as a limit (2017a). arXiv preprint arXiv:1710.11489

  • Meehan, K., Meyer, D.: An isometry theorem for generalized persistence modules (2017b). arXiv preprint arXiv:1710.02858

  • Mileyko, Y., Mukherjee, S., Harer, J.: Probability measures on the space of persistence diagrams. Inverse Probl. 27(12): 124007, 22 (2011)

    MathSciNet  MATH  Google Scholar 

  • Munch, E., Wang, B.: Convergence between categorical representations of Reeb space and mapper (2015). arXiv preprint arXiv:1512.04108

  • Munkres, J.R.: Topology: A First Course. Prentice-Hall Inc., Englewood Cliffs (1975)

    MATH  Google Scholar 

  • Patel, A.: Generalized persistence diagrams. J. Appl. Comput. Topol. 1(3), 397–419 (2018)

    Article  MATH  Google Scholar 

  • Puuska, V.: Erosion distance for generalized persistence modules (2017). arXiv preprint arXiv:1710.01577

  • Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discrete Comput. Geom. 52(1), 44–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wasserman, L.: Topological data analysis (2016). arXiv preprint arXiv:1609.08227 [stat.ME]

  • Webb, C.: Decomposition of graded modules. Proc. Am. Math. Soc. 94(4), 565–571 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to that the anonymous referees for their helpful suggestions. In particular, we would like to thank the referee who contributed the proof that the enveloping distance from pointwise-finite dimensional persistence modules to q-tame persistence modules is zero. We also thank Alex Elchesen for proofreading an earlier draft of the paper. The first author would like to acknowledge the support of UFII SEED funds, ARO Research Award W911NF1810307, and the Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics of Complex Biological Systems, under National Science Foundation Grant No. DMS-1764406 and Simons Foundation Grant No. 594594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bubenik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

A The arithmetic of maps and interleavings of interval modules

A The arithmetic of maps and interleavings of interval modules

In this appendix, we give some basic results on interval modules, maps of interval modules, interleavings of interval modules, and neighborhoods of interval modules.

1.1 A.1 Some relations between intervals

First we define some relations between intervals that will be useful in the following sections and describe some of their properties.

Recall that \(I \subset {\mathbb {R}}\) is an interval if \(a, c \in I\) and \(a \le b \le c\) then \(b \in I\). It follows that the intersection of two intervals is an interval.

Definition 9

For \(A,B \subset {\mathbb {R}}\), define the relation \(A \le B\) if

  1. 1.

    for all \(a \in A\) there is a \(b \in B\) such that \(a \le b\), and

  2. 2.

    for all \(b \in B\) there is an \(a \in A\) such that \(a \le b\).

Lemma 18

This relation defines a partial order on intervals.

Proof

Let A, B, and C be intervals. \(A \le A\) since for all \(a \in A\), \(a \le a\). Assume \(A \le B\) and \(B \le A\). Let \(a \in A\). Then by Definition 9 (1), there is \(b \in B\) with \(a \le b\), and by Definition 9 (2), there is \(b' \in B\) with \(b' \le a\). Since B is an interval \(a \in B\). Thus \(A \subset B\). Similarly \(B \subset A\).

Finally assume \(A \le B\) and \(B \le C\). For all \(a \in A\) there is a \(b \in B\) with \(a \le b\) and \(c \in C\) with \(b \le c\). Thus \(a \le c\). For all \(c \in C\) there is a \(b \in B\) with \(b \le c\) and \(a \in A\) with \(a \le b\). Thus \(a \le c\). Therefore \(A \le C\). \(\square \)

Let us define another relation.

Definition 10

For \(A,B \subset {\mathbb {R}}\), define \(A \prec B\) if for all \(a \in A\) and \(b \in B\), \(a \le b\).

Lemma 19

Let I and J be disjoint, nonempty intervals. Then \(J \le I\) iff \(J \prec I\).

Proof

See Fig. 8. Let \(j \in J\). Then either condition implies that there is an \(i \in I\) with \(j \le i\). The negation of either condition implies that there is an \(i \in I\) with \(i<j\). Since I is an interval, this would imply that \(j \in I\) which is a contradiction. \(\square \)

Fig. 8
figure 8

Two disjoint nonempty intervals

Lemma 20

If J and I are intervals with \(J \le I\) then \(J \setminus (I \cap J) = J \setminus I\) is an interval and \(I \setminus (I \cap J) = I \setminus J\) is an interval.

Proof

Let \(a,c \in J \setminus (I \cap J)\) and \(a \le b \le c\). Since J is an interval, \(b \in J\). Since \(c \in J\) there is a \(d \in I\) with \(c \le d\). Since \(c \not \in I\) and I is an interval, \(b \not \in I\). Thus \(b \in J \setminus (I \cap J)\).

Let \(a,c \in I \setminus (I \cap J)\) and \(a \le b \le c\). Since I is an interval \(b \in I\). Since \(a \in I\) there is a \(x \in J\) with \(x \le a\). Since \(a \not \in J\) and J is an interval, \(b \not \in J\). Thus \(b \in I \setminus (I \cap J)\). \(\square \)

Lemma 21

Let I and J be intervals with \(J \le I\). Then \(J \setminus (I \cap J) \prec (I \cap J)\), and \((I \cap J) \prec I \setminus (I \cap J)\).

Proof

See Fig. 9. First note that if either A or B is empty then \(A \prec B\). Suppose \(j \in J \setminus (I \cap J)\) and \(i \in I \cap J\) with \(i < j\). Since \(J \le I\), there is an \(i' \in I\) with \(j \le i'\). Since I is an interval, \(j \in I\), which is a contradiction. Thus, for all \(j \in J \setminus (I \cap J)\) and for all \(i \in I \cap J\), \(j \le i\). That is, \(J \setminus (I \cap J) \prec (I \cap J)\). Similarly, let \(j \in I \cap J\) and \(i \in I \setminus (I \cap J)\) with \(i < j\). Again, since \(J \le I\), there is a \(j' \in J\) with \(j'\le i\). Since J is an interval, \(i \in J\), which is a contradiction. \(\square \)

Fig. 9
figure 9

The interval modules in Lemmas 20, 21, 22, Proposition 16 and Corollary 11

1.2 A.2 Nonzero maps of interval modules

In this section we characterize nonzero maps of interval modules.

Proposition 16

Let I and J be nonempty intervals. There is a nonzero map of persistence modules \(f:I \rightarrow J\) if and only if \(J \le I\) and \(I \cap J \ne \emptyset \).

Proof

\((\Rightarrow )\) Assume \(f \ne 0\). Then there is an \(a \in {\mathbb {R}}\) such that \(0 \ne f_a:I(a) \rightarrow J(a)\). Without loss of generality, assume that \(f_a = 1\). Thus \(a \in I\) and \(a \in J\). We need to check the conditions in Definition 9.

(1) For all \(i \in I\) with \(a \le i\), the condition is satisfied by \(a \in J\). For all \(i \in I\) with \(i \le a\), we have the following commutative diagram,

figure l

which implies that \(i \in J\), and thus \(J(i\le a) = 1\), and therefore \(f_i= 1\). (2) For all \(j \in J\) with \(j \le a\), the condition is satisfied by \(a \in I\). For all \(j \in J\) with \(a \le j\), we have the following commutative diagram,

figure m

which implies that \(j \in I\), \(I(a \le j) = 1\), and \(f_j= 1\).

\((\Leftarrow )\) Define \(f:I \rightarrow J\) by \(f_a=1\) if \(a \in I \cap J\), and \(f_a=0\) otherwise. We claim that f is a natural transformation. For \(a \le b\), we need to check that the diagram

figure n

commutes. There are four cases to check. If \(a,b \in I \cap J\), then all four maps are the identity and thus the diagram commutes. If \(a,b \not \in I \cap J\) then both vertical maps are zero and thus the diagram commutes.

If \(a \in I \cap J\) and \(b \not \in I \cap J\) then by definition the left map is the identity and the right map is zero. If \(b \in J\) then \(b \not \in I\), which implies, since I is an interval, that for all \(c \ge b\), \(c \not \in I\). But this contradicts Definition 9 (1). Therefore \(b \not \in J\). Thus \(J(b) = 0\) and hence the diagram commutes.

If \(a \not \in I \cap J\) and \(b \in I \cap J\), then \(f_a=0\) and without loss of generality \(f_b=1\). Again \(a \in I\) implies \(a \not \in J\), which implies that for all \(c \le a\), \(c \not \in J\), which is a contradiction. Therefore \(a \not \in I\) which implies that \(I(a) = 0\) and thus the diagram commutes. \(\square \)

Lemma 22

Assume there is a nonzero map \(f: I \rightarrow J\) of interval modules. Then (up to isomorphism) \(f_a = 1\) if \(a \in I \cap J\) and \(f_a = 0\) otherwise.

Proof

Assume \(f \ne 0\). The there is a \(b \in I \cap J\) such that \(f_b\) is nonzero. Without loss of generality, we may assume that \(f_b = 1\). Let \(a \le b \le c \in I \cap J\). We have the following commutative diagram,

figure o

which implies that \(f_a = 1\) and \(f_c=1\). Thus \(f_a=1\) for all \(a \in I \cap J\).

If \(a \not \in I \cap J\) then either \(I(a)=0\) or \(J(a)=0\), which implies that \(f_a=0\). \(\square \)

Corollary 11

Let \(f:I \rightarrow J\) be a nonzero map of interval modules. Then the image of f is \(I \cap J\), the kernel of f is \(I \setminus (I \cap J)\), the cokernel of f is \(J \setminus (I \cap J)\), and f factors as follows.

figure p

1.3 A.2 Interleavings of interval modules

In this section we characterize interleavings of interval modules.

Definition 11

Let I be an interval and \(\varepsilon \in {\mathbb {R}}\). Define the shifted interval\(I[\varepsilon ]\) by \(x \in I[\varepsilon ]\) if and only if \(x+\varepsilon \in I\). For example, \([a,b)[\varepsilon ] = [a-\varepsilon ,b-\varepsilon )\).

The next lemma follows immediately from the definitions.

Lemma 23

If I is a nonempty interval and \(\varepsilon \ge 0\), then \(I[\varepsilon ] \le I\).

Definition 12

Let M be a persistence module and let \(\varepsilon \in {\mathbb {R}}\). We define the shifted persistence module\(M[\varepsilon ]\) by \(M[\varepsilon ](a) = M(a + \varepsilon )\) and \(M[\varepsilon ](a \le b) = M(a + \varepsilon \le b + \varepsilon )\). That is, \(M[\varepsilon ] = MT_{\varepsilon }\).

We remark that these two definitions are compatible. If I is an interval module and \(\varepsilon \in {\mathbb {R}}\), then the shifted persistence module \(I[\varepsilon ]\) is the interval module on the interval \(I[\varepsilon ]\). Also note that \(0[\varepsilon ] = 0\).

Let I be an interval and \(\varepsilon \ge 0\). If \(I \cap I[\varepsilon ] \ne \emptyset \), we denote the corresponding nonzero map from Proposition 16 by \(I^{(\varepsilon )}:I \rightarrow I[\varepsilon ]\). If I and \(I[\varepsilon ]\) are disjoint, we denote the zero map by \(I^{(\varepsilon )}:I \rightarrow I[\varepsilon ]\). In either case, \(I^{(\varepsilon )} = I\eta _{\varepsilon }\).

Definition 13

Given a map of persistence modules \(\alpha : M \rightarrow N\) and \(\varepsilon \in {\mathbb {R}}\), define \(\alpha [\varepsilon ]: M[\varepsilon ] \rightarrow N[\varepsilon ]\) by \(\alpha [\varepsilon ]_a = \alpha _{a+\varepsilon }\). That is, \(\alpha [\varepsilon ] = \alpha T_{\varepsilon }\).

As a special case of Definition 1, we have the following.

Definition 14

Let I and J be interval modules and \(\varepsilon \ge 0\). Then I and J are \(\varepsilon \)-interleaved if there exist maps \(\varphi : I \rightarrow J[\varepsilon ]\) and \(\psi : J \rightarrow I[\varepsilon ]\) such that \(\psi [\varepsilon ]\varphi = I^{(2\varepsilon )}\) and \(\varphi [\varepsilon ]\psi = J^{(2\varepsilon )}\).

Lemma 24

If intervals satisfy \(K \le J \le I\) then \(I \cap K \subset J\).

Proof

Let \(x \in I \cap K\). Then there is a \(j \in J\) such that \(x \le j\). Also, there is a \(j' \in J\) with \(j' \le x\). Since J is an interval, \(x \in J\). \(\square \)

Lemma 25

If \(K \le J \le I\) then \(I \cap K = (I \cap J) \cap (J \cap K)\).

Proof

One direction is easy: \((I \cap J) \cap (J \cap K) = I \cap J \cap K \subset I \cap K\). The other direction follows from Lemma 24. \(\square \)

Proposition 17

Let I and J be interval modules and \(\varepsilon \ge 0\). If \(J[\varepsilon ] \le I\) and \(I[\varepsilon ] \le J\) then I and J are \(\varepsilon \)-interleaved.

Proof

Define \(\varphi :I \rightarrow J[\varepsilon ]\) by \(\varphi _x = 1\) if \(x \in I \cap J[\varepsilon ]\) and \(\varphi _x = 0\) otherwise. Similarly define \(\psi : J \rightarrow I[\varepsilon ]\) by \(\psi _x = 1\) if \(x \in J \cap I[\varepsilon ]\) and \(\psi _x = 0\) otherwise. We claim that these provide the desired \(\varepsilon \)-interleaving.

First, \(I^{(2\varepsilon )}: I \rightarrow I[2\varepsilon ]\) is given by \(I^{(2\varepsilon )}_x = 1\) if \(x \in I \cap I[2\varepsilon ]\) and \(I^{(2\varepsilon )}_x = 0\) otherwise. Next, \(\psi [\varepsilon ]\varphi _x = 1\) if \(x \in (I \cap J[\varepsilon ]) \cap (J[\varepsilon ]\cap I[2\varepsilon ])\) and \(\psi [\varepsilon ]\varphi _x = 0\) otherwise. By Lemma 25, these maps are equal. Similarly, \(\varphi [\varepsilon ]\psi = J^{(2\varepsilon )}\). \(\square \)

Next, we define the erosion of a persistence module. Compare with (Patel 2018) and (Puuska 2017).

Definition 15

Let I be an interval or an interval module and \(\varepsilon \ge 0\). We define the \(\varepsilon \)-erosion of I to be \(I^{-\varepsilon } = I[\varepsilon ] \cap I[-\varepsilon ]\).

Note that \(I[\varepsilon ] \le I^{-\varepsilon } \le I[-\varepsilon ]\). See Fig. 10.

Fig. 10
figure 10

An interval module and its erosion

Corollary 12

If \(J[\varepsilon ] \le I\) and \(I[\varepsilon ] \le J\) then \(I^{-\varepsilon } \subset J\) and \(J^{-\varepsilon } \subset I\).

Proof

It follows from the assumptions that we also have \(J \le I[-\varepsilon ]\) and \(I \le J[-\varepsilon ]\). So we have \(J[\varepsilon ] \le I \le J[-\varepsilon ]\) and \(I[\varepsilon ] \le J \le I[-\varepsilon ]\). The result follows from Lemma 24. \(\square \)

Theorem 10

Let I and J be interval modules and \(\varepsilon \ge 0\). Then I and J are \(\varepsilon \)-interleaved if only if \(I^{-\varepsilon } \subset J\) and \(J^{-\varepsilon } \subset I\).

Proof

\((\Rightarrow )\) Let \(\varphi \) and \(\psi \) be an \(\varepsilon \)-interleaving. If either \(\varphi \) or \(\psi \) are zero, then from Definition 14, \(I^{(2\varepsilon )}\) and \(J^{(2\varepsilon )}\) are zero. It follows that \(I^{-\varepsilon }\) and \(J^{-\varepsilon }\) are both empty and the condition is satisfied. If both \(\varphi \) and \(\psi \) are nonzero, then by Proposition 16, \(J[\varepsilon ] \le I\) and \(I[\varepsilon ] \le J\). The result follows from Corollary 12.

\((\Leftarrow )\) We need to check four cases. (1) \(I^{-\varepsilon }\) and \(J^{-\varepsilon }\) are both empty. Then I and J are \(\varepsilon \)-interleaved by \(\varphi =0\) and \(\psi =0\).

(2) \(I^{-\varepsilon }\) and \(J^{-\varepsilon }\) are both nonempty. Let \(a \in I[\varepsilon ]\). Then there is an element \(b \in I^{-\varepsilon } \subset J\) with \(a \le b\). Let \(b \in I\). Then there is an element \(a \in I^{-\varepsilon }[\varepsilon ] \subset J[\varepsilon ]\) with \(a \le b\). Let \(a \in J[\varepsilon ]\). Then there is an element \(b \in J^{-\varepsilon } \subset I\) with \(a \le b\). Let \(b \in J\). Then there is an element \(a \in J^{-\varepsilon }[\varepsilon ] \subset I[\varepsilon ]\) with \(a \le b\). The result follows from Proposition 17.

(3) \(I^{-\varepsilon }\) is nonempty and \(J^{-\varepsilon }\) is empty. Let \(a \in I[\varepsilon ]\). Then there is \(b \in I^{-\varepsilon } \subset J\) with \(a\le b\). Since J is shorter than I, it follows that \(I[\varepsilon ] \le J\). Let \(b \in I\). Then there is \(a \in I^{-\varepsilon }[\varepsilon ] \subset J[\varepsilon ]\) with \(a \le b\). Since J is shorter than I, it follows that \(J[\varepsilon ] \le I\). The result follows from Proposition 17.

(4) is the same as the third case. \(\square \)

1.4 A.4 Neighborhoods of interval modules

Using Theorem 10, one obtains a complete characterization of the interval modules within distance \(\varepsilon \) of an interval module.

Example 9

Consider the interval module [ab) and let \(\varepsilon \in [0,\frac{b-a}{2})\). Then an interval module I is \(\varepsilon \)-interleaved with [ab) if and only if \([a+\varepsilon ,b-\varepsilon ) \subset I \subset [a-\varepsilon ,b+\varepsilon )\). Furthermore \(B_\varepsilon ([a,b))\) consists of those interval modules I satisfying

$$\begin{aligned} a-\varepsilon< \inf I< a+\varepsilon \quad \text {and} \quad b-\varepsilon< \sup I < b+\varepsilon . \end{aligned}$$

Example 10

Consider the interval module [ab) and let \(\varepsilon \ge \frac{b-a}{2}\). Then an interval I is \(\varepsilon \)-interleaved with [ab) if and only if either \(I \subset [a-\varepsilon ,b+\varepsilon )\) or if for no \(x \in {\mathbb {R}}\) do we have \([x-\varepsilon ,x+\varepsilon ] \subset I\). Furthermore, \(B_{\varepsilon }([a,b))\) consists of those interval modules I with either \(a-\varepsilon < \inf I\) and \(\sup I < b+\varepsilon \) or \({{\mathrm{diam}}}I < \varepsilon \).

Example 11

Consider the interval module \([a,\infty )\) and let \(\varepsilon \ge 0\). Then an interval module I is \(\varepsilon \)-interleaved with \([a,\infty )\) if and only if \([a+\varepsilon ,\infty ) \subset I \subset [a-\varepsilon ,\infty )\). Furthermore \(B_{\varepsilon }([a,\infty ))\) consists of interval modules I satisfying \(a-\varepsilon< \inf I < a + \varepsilon \) and \(\sup I = \infty \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bubenik, P., Vergili, T. Topological spaces of persistence modules and their properties. J Appl. and Comput. Topology 2, 233–269 (2018). https://doi.org/10.1007/s41468-018-0022-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-018-0022-4

Keywords

Mathematics Subject Classification

Navigation