Skip to main content
Log in

The effects of beam drifts on elastic scattering measured by the large solid-angle covered detector array

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A new detector array characterized by compact structure and large solid-angle coverage was designed for radioactive ion beam (RIB) experiments and measuring multi-particle correlations. A Monte Carlo simulation was performed to explore the effects of beam drifts in different directions and distances on the angular distribution of the Rutherford scattering, as measured by the detector array. The results indicate that when the beam drift distance is less than 2.0 mm, the symmetry of the detector array can maintain a count error of less than \(5\%\). This confirms the property of the detector array for RIB experiments. Furthermore, the simulation was validated through the elastic scattering angular distributions of \(^{6,7}\) Li measured by the detector array in \(^{6,7}\hbox {Li} + ^{209}\hbox {Bi}\) experiments at different energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Signorini, A. Edifizi, M. Mazzocco et al., Exclusive breakup of \(^{6}\text{ Li }\) by \(^{208}\text{ Pb }\) at Coulomb barrier energies. Phys. Rev. C 67, 044607 (2003). https://doi.org/10.1103/PhysRevC.67.044607

    Article  Google Scholar 

  2. L.F. Canto, P.R.S. Gomes, R. Donangelo et al., Recent developments in fusion and direct reactions with weakly bound nuclei. Phys. Rep. 596, 1–86 (2015). https://doi.org/10.1016/j.physrep.2015.08.001

    Article  MathSciNet  Google Scholar 

  3. N. Keeley, R. Raabe, N. Alamanos, J.L. Sida, Fusion and direct reactions of halo nuclei at energies around the Coulomb barrier. Prog. Particle Nucl. Phys. 59, 579–630 (2007). https://doi.org/10.1016/j.ppnp.2007.02.002

    Article  Google Scholar 

  4. K.J. Cook, E.C. Simpson, L.T. Bezzina et al., Origins of Incomplete Fusion Products and the Suppression of Complete Fusion in Reactions of \(^{7}\text{ Li }\). Phys. Rev. Lett 122, 102501 (2019). https://doi.org/10.1103/PhysRevLett.122.102501

    Article  Google Scholar 

  5. M. Dasgupta, P.R.S. Gomes, D.J. Hinde et al., Effect of breakup on the fusion of \(^{6}\text{ Li }\), \(^{7}\text{ Li }\) and \(^{9}\text{ Be }\) with heavy nuclei. Phys. Rev. C 70, 024606 (2004). https://doi.org/10.1103/PhysRevC.70.024606

    Article  Google Scholar 

  6. M. Mazzocco, D. Torresi, D. Pierroutsakou et al., Direct and compound-nucleus reaction mechanisms in the \(^{7}\text{ Be } + ^{58}\text{ Ni }\) system at near-barrier energies. Phys. Rev. C 92, 024615 (2015). https://doi.org/10.1103/PhysRevC.92.024615

    Article  Google Scholar 

  7. E.F. Aguilera et al., Near-Barrier Fusion of the \(^{8}\text{ B } + ^{58}\text{ Ni }\) Proton-Halo System. Phys. Rev. Lett. 107, 092701 (2011). https://doi.org/10.1103/PhysRevLett.107.092701

    Article  Google Scholar 

  8. E. Strano, A. Anastasio, M. Bettini et al., The high granularity and large solid angle detection array EXPADES. Nucl. Instr. Methods Phys. Res. B 317, 657–660 (2013). https://doi.org/10.1016/j.nimb.2013.06.035

    Article  Google Scholar 

  9. D. Pierroutsakou, A. Boiano, C. Boiano et al., The experimental setup of the RIB in-flight facility EXOTIC. Nucl. Instr. Methods Phys. Res. A 837, 46–70 (2016). https://doi.org/10.1016/j.nima.2016.07.019

    Article  Google Scholar 

  10. N.R. Ma et al., MITA: A Multilayer Ionization-chamber Telescope Array forlow-energy reactions with exotic nuclei. Eur. Phys. J. A 55, 87 (2019). https://doi.org/10.1140/epja/i2019-12765-7

    Article  Google Scholar 

  11. G.L. Zhang, Y.J. Yao, G.X. Zhang et al., A detector setup for the measurement of angular distribution of heavy-ion elastic scattering with low energy on RIBLL. Nucl. Sci. Tech. 28, 104 (2017). https://doi.org/10.1007/s41365-017-0249-0

    Article  Google Scholar 

  12. K.J. Cook, E.C. Simpson, D.H. Luong et al., Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei. Phys. Rev. C 93, 064604 (2016). https://doi.org/10.1103/PhysRevC.93.064604

    Article  Google Scholar 

  13. S. Kalkal, E.C. Simpson, D.H. Luong et al., Asymptotic and near-target direct breakup of \(^{6}\text{ Li }\) and \(^{7}\text{ Li }\). Phys. Rev. C 93, 069904 (2016). https://doi.org/10.1103/PhysRevC.93.069904

    Article  Google Scholar 

  14. D.H. Luong, M. Dasgupta, D.J. Hinde et al., Predominance of transfer in triggering breakup in sub-barrier reactions of \(^{6,7}\text{ Li }\) with \(^{144}\text{ Sm }\), \(^{207,208}\text{ Pb }\) and \(^{209}\text{ Bi }\). Phys. Rev. C 88, 034609 (2013). https://doi.org/10.1103/PhysRevC.88.034609

    Article  Google Scholar 

  15. D.H. Luong, M. Dasgupta, D.J. Hinde et al., Insights into the mechanisms and time-scales of breakup of \(^{6,7}\text{ Li }\). Phys. Lett. B 695, 105–109 (2011). https://doi.org/10.1016/j.physletb.2010.11.007

    Article  Google Scholar 

  16. D.X. Wang, C.J. Lin, L. Yang et al., Compact 16-channel integrated charge-sensitive preamplifier module for silicon strip detectors. Nucl. Sci. Tech. 31, 48 (2020). https://doi.org/10.1007/s41365-020-00755-0

    Article  Google Scholar 

  17. G.X. Zhang, G.L. Zhang, C.J. Lin et al., The calibration of elastic scattering angular distribution at low energies on HIRFL-RIBLL. Nucl. Instr. Methods Phys. Res. A 846, 23–28 (2017). https://doi.org/10.1016/j.nima.2016.11.058

    Article  Google Scholar 

  18. O.B. Tarasovab, D. Bazina, LISE++: design your own spectrometer. Nucl. Phys. A 746, 411–414 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.063

    Article  Google Scholar 

  19. J. Mocaka, A.M. Bond, Use of MATHEMATICA software for theoretical analysis of linear sweep voltammograms. J. Electroanal. Chem. 561, 191–202 (2004). https://doi.org/10.1016/j.jelechem.2003.08.004

    Article  Google Scholar 

  20. M. H. Macfarlane, S. C. PIEPER. PTOLEMY: A program for heavy-ion direction-reaction calculation [R]. US : Argonne National Laboratory (1978)

  21. S. Santra, S. Kailas, K. Ramachandran et al., Reaction mechanisms involving weakly bound \(^{6}\text{ Li }\) and \(^{209}\text{ Bi }\) at energies near the Coulomb barrier. Phys. Rev. C 83, 034616 (2011). https://doi.org/10.1103/PhysRevC.83.034616

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Nan-Ru Ma, Dong-Xi Wang, and Yong-Jin Yao. The first draft of the manuscript was written by Yong-Jin Yao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Cheng-Jian Lin or Gao-Long Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11635015, U1832130, and 11975040), the State Key Laboratory of Software Development Environment (SKLSDE-2020ZX-16), the Continuous Basic Scientific Research Project (No. WDJC-2019-13), and the Leading Innovation Project (Nos. LC192209000701 and LC202309000201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, YJ., Lin, CJ., Yang, L. et al. The effects of beam drifts on elastic scattering measured by the large solid-angle covered detector array. NUCL SCI TECH 32, 14 (2021). https://doi.org/10.1007/s41365-021-00854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00854-6

Keywords

Navigation