Skip to main content
Log in

Study on dynamic characteristics of fission products in 2 MW molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, a numerical flow model of the fission products (FPs) in the primary loop system of a molten salt reactor (MSR) was established and solved using Mathematica 7.0. The simulation results were compared with those of the ORIGEN-S program in the static burnup mode, and the deviation was found to be less than 10%, which indicates that the results are in good agreement. Furthermore, the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed. In addition, the distribution phenomenon of the FPs under different flow rate conditions was studied. At the end of life, the FPs activity in the core region (including active region, and upper and lower plenum regions) accounted for 77.3%, and that in the hot leg #1, main pump, hot leg #2, heat exchanger, and cold leg region accounted for 1.2%, 16.15%, 0.99%, 2.5%, and 1.9%, respectively, of the total FPs in the primary loop under normal operating conditions. The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24–22,400 cm3 s−1. The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop, radioactive source management design, thermal–hydraulic safety analysis, and radiochemical analysis of FPs of 2 MW MSRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.S. Bettis, W.B. Cottrell, E.R. Mann et al., The aircraft reactor experiment—operation. Nucl. Sci. Eng. 2, 841–853 (1957). https://doi.org/10.13182/nse57-a35497

    Article  Google Scholar 

  2. R. Briant, Collection of papers on the aircraft reactor experiment. Nucl. Sci. Eng. 2, 797–853 (1957)

    Article  Google Scholar 

  3. A.M. Weinberg, M.W. Rosenthal, P.N. Haubenreich et al., Collection of papers on the molten salt reactor experiment. Nucl. Appl. Technol. 8(2), 105–219 (1970)

    Article  Google Scholar 

  4. D. Scott, A.G. Grindell, Components and Systems Development for Molten-Salt Breeder Reactors (Oak Ridge National Laboratory, Oak Ridge, 1967). https://doi.org/10.2172/4367859

    Book  Google Scholar 

  5. R.C. Robertson, O.L. Smith, R.B. Briggs et al., Two-Fluid Molten-Salt Breeder Reactor Design Study (Oak Ridge National Laboratory, Oak Ridge, 1970). https://doi.org/10.2172/4093364

    Book  Google Scholar 

  6. J.L. Anderson, P.N. Haubenreich, R.C. Robertson et al., Conceptual Design Study of a Single-Fluid Molten Salt Breeder Reactor (Oak Ridge National Laboratory, Oak Ridge, 1971). https://doi.org/10.2172/4030941

    Book  Google Scholar 

  7. J.R. Engel, H.F. Bauman, J.F. Dearing et al., Conceptual Design Characteristics of a Denatured Molten-Salt Reactor with Once-Through Fueling (Office of Scientific and Technical Information, Oak Ridge, 1980). https://doi.org/10.2172/5352526

    Book  Google Scholar 

  8. C.W. Forsberg, P.F. Peterson, P.S. Pickard, Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity. Nucl. Technol. 144(3), 289–302 (2003). https://doi.org/10.13182/nt03-1

    Article  Google Scholar 

  9. R.C. William, D.B. Timothy, H. William et al., Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2 (Oak Ridge National Laboratory, Oak Ridge, 2005)

    Google Scholar 

  10. S.R. Greene, J.C. Gehin, D.E. Holcomb et al., Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (Sm AHTR). Technical report TM-2010/199 (Oak Ridge National Laboratory, Tennessee, 2011). https://doi.org/10.2172/1008830

  11. M.S. Cheng, Z.M. Dai, Preliminary safety analysis of molten salt breeder reactor. Nucl. Tech. 36, 060601 (2013). https://doi.org/10.11889/j.0253-3219.2013.hjs.36.060601. (in Chinese)

    Article  Google Scholar 

  12. G.C. Li, Y. Zou, C.G. Yu et al., Model optimization and analysis of Th-U breeding based on MSFR. Nucl. Tech. 40, 020603 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.020603. (in Chinese)

    Article  Google Scholar 

  13. Y.F. Liu, L.W. Mei, X.Z. Cai et al., Physics research for Molten Salt Reactor with different core boundaries. Nucl. Tech. 36, 030601 (2013). (in Chinese)

    Google Scholar 

  14. M.H. Jiang, H.J. Xu, Z.M. Dai, Advanced fission energy program-TMSR nuclear energy system. Bull. Chin. Acad. Sci. 27(3), 366–374 (2012). https://doi.org/10.3969/j.issn.1000-3045.2012.03.016. (in Chinese)

    Article  Google Scholar 

  15. R. Yan, S.H. Yu, Y. Zou et al., Study on neutronics design of ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Nucl. Sci. Tech. 29, 81 (2018). https://doi.org/10.1007/s41365-018-0414-0

    Article  Google Scholar 

  16. G.C. Li, Y. Zou, C.G. Yu et al., Influences of 7Li enrichment on Th–U fuel breeding for an improved molten salt fast reactor (IMSFR). Nucl. Sci. Tech. 28, 97 (2017). https://doi.org/10.1007/s41365-017-0250-7

    Article  Google Scholar 

  17. S.H. Yu, Y.F. Liu, P. Yang et al., Effect analysis of core structure changes on reactivity in molten salt experimental reactor. Nucl. Tech. 42, 020603 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.020603. (in Chinese)

    Article  Google Scholar 

  18. G.F. Zhu, R. Yan, S.H. Yu et al., An application of direct statistical method for kinetics parameters in TMSR-SF1. Nucl. Tech. 41, 050603 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.050603. (in Chinese)

    Article  Google Scholar 

  19. R.M. Ji, R. Yan, X.X. Li et al., Effect of TRISO-particles distributions in pebble fuel. Nucl. Tech. 40, 100604 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.100604. (in Chinese)

    Article  Google Scholar 

  20. B. Zhou, R. Yan et al., Analysis of decay heat in primary loop of molten salt reactor under normal conditions. Nucl. Tech. 41, 040602 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.040602. (in Chinese)

    Article  Google Scholar 

  21. X.B. Wang, D.W. Long, T.J. Zhu et al., Electrochemical behaviors of Ln3+ in LnF3-LiCl-KCl molten salt. Nucl. Tech. 41, 060301 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.060301. (in Chinese)

    Article  Google Scholar 

  22. T.H. Yang, Y. Luo, H.Y. Fu et al., The influence of fluorides on the distillation behaviors of molten LiCl-KCl. Nucl. Tech. 41, 120301 (2018). https://doi.org/10.11889/j.0253-3219.2018.hjs.41.120301. (in Chinese)

    Article  Google Scholar 

  23. A.G.A. Croff, User’s Manual for the Origen2 Computer Code (Oak Ridge National Laboratory, Oak Ridge, 1980). https://doi.org/10.2172/5285077

    Book  Google Scholar 

  24. M.A. Jessee, M.D. DeHart, Triton: A Multipurpose Transport, Depletion, and Sensitivity and Uncertainty Analysis Module (Oak Ridge National Laboratory, Oak Ridge, 2011)

    Google Scholar 

  25. I.C. Gauld, ORIGEN-S: Depletion Module to Calculate Neutron Activation, Actinide Transmutation, Fission Product Generation, and Radiation Source Terms (ORNL, Oak Ridge, 2011)

    Google Scholar 

  26. D.F. Hollenbach, L.M. Petrie et al., KENO-VI: A Monte Carlo Criticality Program with Generalized Quadratic Geometry (Oak Ridge National Lab, Oak Ridge, 1993)

    Google Scholar 

  27. R.E. Thoma, Chemical Aspects of MSRE Operations (Oak Ridge National Laboratory, Oak Ridge, 1971). https://doi.org/10.2172/4675946

    Book  Google Scholar 

  28. M.A.A. Aslani, S. Aytas, S. Akyil et al., Activity concentration of caesium-137 in agricultural soils. J. Environ. Radioact. 65, 131–145 (2003). https://doi.org/10.1016/S0265-931X(02)00092-9

    Article  Google Scholar 

  29. J.R. Guo, Fission Product Analysis Technology (Atomic Energy Press, Beijing, 2008), p. 136

    Google Scholar 

  30. D. LeBlanc, Molten salt reactors: a new beginning for an old idea. Nucl. Eng. Des. 240, 1644–1656 (2010). https://doi.org/10.1016/j.nucengdes.2009.12.033

    Article  Google Scholar 

  31. Z. Li, P.X. Li, Z.Q. Gao et al., A method for determining 137Cs in seawater by using 134Cs as tracer. Radiat. Prot. 34(4), 250–254 (2014). (in Chinese)

    Google Scholar 

  32. J.H. Wu, C. Guo, X.Z. Cai et al., Flow effect on 135I and 135Xe evolution behavior in a molten salt reactor. Nucl. Eng. Des. 314, 318–325 (2017). https://doi.org/10.1016/j.nucengdes.2017.01.019

    Article  Google Scholar 

  33. B. Zhou, R. Yan et al., Analysis of xenon dynamic characteristics in primary loop system of MSR. Nucl. Power Eng. 39(05), 19–24 (2018). (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yan.

Additional information

This work was supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project (No. XDA02010000), and The Frontier Science Key Program of Chinese Academy of Sciences (No. QYZDY-SSW-JSC016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Yu, XH., Zou, Y. et al. Study on dynamic characteristics of fission products in 2 MW molten salt reactor. NUCL SCI TECH 31, 17 (2020). https://doi.org/10.1007/s41365-020-0730-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0730-z

Keywords

Navigation