Skip to main content

Advertisement

Log in

Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Herein, we assess the 129I transmutation capability of a 2250-MWt single-fluid double-zone thorium molten salt reactor (SD-TMSR) by considering two methods. One is realized by loading an appropriate amount of 129I before the startup of the reactor, and the amount of 129I during operation is kept constant by online feeding 129I. The other adopts only an initial loading of 129I before startup, and no other 129I is fed online during operation. The investigation first focuses on the effect of the loading of I on the Th-233U isobreeding performance. The results indicate that a 233U isobreeding mode can be achieved for both scenarios for a 60-year operation when the initial molar proportion of LiI is maintained within 0.40% and 0.87%, respectively. Then, the transmutation performances for the two scenarios are compared by changing the amount of injected iodine into the core. It is found that the scenario that adopts an initial loading of 129I shows a slightly better transmutation performance in comparison with the scenario that adopts online feeding of 129I when the net 233U productions for the two scenarios are kept equal. The initial loading of 129I scenario with LiI = 0.87% molar proportion is recommended for 129I transmutation in the SD-TMSR, and can transmute 1.88 t of 129I in the 233U isobreeding mode over 60 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.S. Yang, Y. Kim, R.N. Hill et al., Long-lived fission product transmutation studies. Nucl. Sci. Eng. 146, 291–318 (2004). https://doi.org/10.13182/NSE04-A2411

    Article  Google Scholar 

  2. L.H. Baetslé, M. Embid-Segura, J. Magill et al., Implications of partitioning and transmutation in radioactive waste management, in IAEA-TECDOC-435, vol. 51 (IAEA, Vienna, Austria, 2004)

  3. T.X. Liang, C.H. Tang, Transmutation of long-lived nuclides. Nucl. Tech. 26(12), 935–939 (2003). https://doi.org/10.3321/j.issn:0253-3219.2003.12.008 (in Chinese)

    Article  Google Scholar 

  4. T.Y. Song, Y. Kim, B.O. Lee et al., Design and analysis of HYPER. Ann. Nucl. Energy 34, 902–909 (2007). https://doi.org/10.1016/j.anucene.2007.04.010

    Article  Google Scholar 

  5. K. Ismailov, K. Nishihara, M. Saito et al., Optimization study on accelerator driven system design for effective transmutation of Iodine-129. Ann. Nucl. Energy 56, 136–142 (2013). https://doi.org/10.1016/j.anucene.2013.01.042

    Article  Google Scholar 

  6. T. Wakabayashi, N. Higano, Study on MA and FP transmutation in fast reactors. Prog. Nucl. Energy 32, 555–562 (1998). https://doi.org/10.1016/S0149-1970(97)00043-7

    Article  Google Scholar 

  7. T. Wakabayashi, Transmutation characteristics of MA and LLFP in a fast reactor. Prog. Nucl. Energy 40, 457–463 (2002). https://doi.org/10.1016/S0149-1970(02)00038-0

    Article  Google Scholar 

  8. K. Liu, H.C. Wu, L.Z. Cao et al., A code development for LLFP transmutation analysis based on the whole pin-wise calculation in PWRs. Nucl. Eng. Des. 256, 56–66 (2013). https://doi.org/10.1016/j.nucengdes.2012.11.014

    Article  Google Scholar 

  9. K. Liu, H.C. Wu, L.Z. Cao et al., Studies on LLFP transmutation in a pressurized water reactor. J. Nucl. Sci. Technol. 50, 581–598 (2013). https://doi.org/10.1080/00223131.2013.785278

    Article  Google Scholar 

  10. A. Nuttin, D. Heuer, A. Billebaud et al., Potential of thorium molten salt reactors: detailed calculations and concept evolution with a view to large scale energy production. Prog. Nucl. Energy 46, 77–99 (2005). https://doi.org/10.1016/j.pnucene.2004.11.001

    Article  Google Scholar 

  11. U.S. Doe, A technology roadmap for generation IV nuclear energy systems. Philos. Rev. 66, 239–241 (2002)

    Google Scholar 

  12. G.C. Li, P. Cong, C.G. Yu et al., Optimization of Th-U fuel breeding based on a single-fluid double-zone thorium molten salt reactor. Prog. Nucl. Energy 108, 144–151 (2018). https://doi.org/10.1016/j.pnucene.2018.04.017

    Article  Google Scholar 

  13. C.G. Yu, X.X. Li, X.Z. Cai et al., Analysis of minor actinides transmutation for a molten salt fast reactor. Ann. Nucl. Energy 85, 597–604 (2015). https://doi.org/10.1016/j.anucene.2015.06.014

    Article  Google Scholar 

  14. D.Y. Cui, S.P. Xia, C.G. Yu et al., Methodologies for single-fluid, two-zone MSR burnup calculation based on SCALE/TRITON. Nucl. Tech. 40(8), 080602 (2017). https://doi.org/10.11889/j.0253-3219.2017.hjs.40.080602 (in Chinese)

    Article  Google Scholar 

  15. G.C. Li, Y. Zou, C.G. Yu et al., Influences of 7Li enrichment on Th-U fuel breeding for an improved molten salt fast reactor (IMSFR). Nucl. Sci. Tech. 28, 97 (2017). https://doi.org/10.1007/s41365-017-0250-7

    Article  Google Scholar 

  16. C.G. Yu, C.Y. Zou, J.H. Wu et al., Development and verification of molten salt reactor refueling and reprocessing system analysis code based on SCALE. At. Energy Sci. Technol. 52, 2126–2146 (2018). https://doi.org/10.7538/yzk.2018.youxian.0123 (in Chinese)

    Article  Google Scholar 

  17. E. Capelli, O. Beneš, R.J.M. Konings, Thermodynamics of soluble fission products cesium and iodine in the molten salt reactor. J. Nucl. Mater. 501, 238–252 (2018). https://doi.org/10.1016/j.jnucmat.2018.01.024

    Article  Google Scholar 

  18. C.G. Yu, X.X. Li, X.Z. Cai et al., Minor actinide incineration and Th-U breeding in a small FLiNaK molten salt fast reactor. Ann. Nucl. Energy 99, 335–344 (2017). https://doi.org/10.1016/j.anucene.2016.09.025

    Article  Google Scholar 

  19. X.C. Zhao, D.Y. Cui, X.Z. Cai et al., Analysis of Th-U breeding capability for an accelerator-driven subcritical molten salt reactor. Nucl. Sci. Tech. 29, 121 (2018). https://doi.org/10.1007/s41365-018-0448-3

    Article  Google Scholar 

  20. H.L. Lu, Y. Ishiwatari, Y. Oka, Study on the LLFPs transmutation in a super-critical water-cooled fast reactor. Nucl. Eng. Des. 241, 395–401 (2011). https://doi.org/10.1016/j.nucengdes.2010.10.019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Yan Zou or Jin-Gen Chen.

Additional information

This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project (No. XDA02010000) and the Frontier Science Key Program of the Chinese Academy of Sciences (No. QYZDY-SSW-JSC016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, KF., Yu, CG., Cai, XZ. et al. Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor. NUCL SCI TECH 31, 10 (2020). https://doi.org/10.1007/s41365-019-0720-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0720-1

Keywords

Navigation