Skip to main content
Log in

Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A real-time double-ring neutron time-of-flight (TOFII) spectrometer system has been proposed to achieve plasma diagnosis on HL-2M tokamak with a relatively high count rate and sufficient energy resolution. The TOFII system is in its development stage, and this work describes its characteristics in terms of design principle, system structure, electronic system design, preliminary tests, and neutron transport simulation. The preliminary test results illustrate that the TOFII system can demonstrate the real-time dynamic spectrum every 10 ms. The results also show that based on the support vector machine method, the nγ discrimination algorithm achieves the discrimination accuracy of 99.1% with a figure of merit of 1.30, and the intrinsic timing resolution of the system is within 0.3%. The simulated flight time spectrums from 1 to 5 MeV are obtained through the Monte Carlo tool Geant4, which also provide the reasonable results. The TOFII system will then be calibrated on mono-energetic neutron sources for further verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.G. Johnson, L. Giacomelli, A. Hjalmarsson et al., The 2.5-MeV neutron time-of-flight spectrometer TOFOR for experiments at JET. Nucl. Instrum. Methods A. 591, 417–430 (2008). https://doi.org/10.1016/j.nima.2008.03.010

    Article  Google Scholar 

  2. Y. Shibata, T. Iguchi, Time-of-flight neutron spectrometer for JT-60U. Rev. Sci. Instrum. 72, 828 (2001). https://doi.org/10.1063/1.1323240

    Article  Google Scholar 

  3. A. Hjalmarsson, S. Conroy, G. Ericsson et al., The TOFOR spectrometer for 2.5 MeV neutron measurements at JET. Rev. Sci. Instrum. 74, 1750 (2003). https://doi.org/10.1063/1.1534401

    Article  Google Scholar 

  4. C. Guerrero, A. Tsinganis, E. Berthoumieux et al., Performance of the neutron time-of-flight facility n TOF at CERN. Eur. Phys. J. A 49, 27 (2013). https://doi.org/10.1140/epja/i2013-13027-6

    Article  Google Scholar 

  5. X. Zhang, J. Källne, G. Gorini et al., Second generation fusion neutron time-of-flight spectrometer at optimized rate for fully digital data acquisition. Rev. Sci. Instrum. 85, 043503 (2014). https://doi.org/10.1063/1.4869804

    Article  Google Scholar 

  6. W. Zhang, T. Wu, B. Zheng et al., A real-time neutron–gamma discriminator based on the support vector machine method for the time-of-flight neutron spectrometer. Plasma Sci. Technol. 20, 045601 (2018). https://doi.org/10.1088/2058-6272/aaaaa9

    Article  Google Scholar 

  7. Q. Li, The component development status of HL-2M tokamak. Fusion Eng. Des. 82, 561–566 (2007). https://doi.org/10.1016/j.fusengdes.2015.06.106

    Article  Google Scholar 

  8. D.Q. Liu, H. Ran, G.S. Li et al., Engineering design for the HL-2M tokamak components. Fusion Eng. Des. 88, 679–682 (2013). https://doi.org/10.1016/j.fusengdes.2013.04.035

    Article  Google Scholar 

  9. D. Liu, T. Lin, T. Qiao et al., Assembly study for HL-2M tokamak. Fusion Eng. Des. 96–97, 298–301 (2015). https://doi.org/10.1016/j.fusengdes.2015.06.026

    Article  Google Scholar 

  10. D. Liu, C. Zhou, Z. Cao et al., Construction of the HL-2A tokamak. Fusion Eng. Des. 66–68, 147 (2003). https://doi.org/10.1016/S0920-3796(03)00165-0

    Article  Google Scholar 

  11. Q. Li, Brief introduction to engineering and experiment of HL-2A tokamak. At. Energy Sci. Technol. 43, 204 (2009). (in Chinese)

    Google Scholar 

  12. Y. Liu, X. Ding, Q. Yang et al., Recent advances in the HL-2A tokamak experiments. Nucl. Fusion 45, S239–S244 (2005). https://doi.org/10.1088/0029-5515/45/10/S19

    Article  Google Scholar 

  13. G.C. Neilson, D.B. James, Time of flight spectrometer for fast neutrons. Rev. Sci. Instrum. 26, 1018 (1955). https://doi.org/10.1063/1.1715178

    Article  Google Scholar 

  14. G.J.F. Legge, P. Van der Merwe, A double scatter neutron spectrometer. Nucl. Instrum. Methods 63, 157–165 (1968). https://doi.org/10.1016/0029-554X(68)90321-2

    Article  Google Scholar 

  15. G. Gorini, J. Källne, High count rate time-of-flight spectrometer for DD fusion neutrons. Rev. Sci. Instrum. 63, 4548 (1992). https://doi.org/10.1063/1.1143663

    Article  Google Scholar 

  16. S. Agostinelli, J. Allison, K. Amako et al., Geant4: a simulation toolkit. Nucl. Instrum. Methods A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  17. Q. Tang, Z. Zhao, M. Su et al., Performance calculation of ultra fast neutron scintillator. High Power Laser Part. Beams 22, 1243 (2010). https://doi.org/10.3788/HPLPB20102206.1243. (in Chinese)

    Article  Google Scholar 

  18. H. Liu, Development and application of the PXI technology. Meas. Control Technol. 25, 51–53 (2006). https://doi.org/10.1007/s10614-006-9021-y. (in Chinese)

    Article  Google Scholar 

  19. J. Christiansen, HPTDC high performance time to digital converter version 2.1 CERN/EP-MIC, CERN, Geneva (2002). http://cds.cern.ch/record/1067476

  20. W. Fan, B. Zheng, J. Cao et al., Development of a fast electron bremsstrahlung diagnostic system based on LYSO and silicon photomultipliers during lower hybrid current drive for tokamak. Plasma Sci. Technol. 21, 065104 (2019). https://doi.org/10.1088/2058-6272/ab0a77

    Article  Google Scholar 

  21. M.G. Johnson, S. Conroy, M. Cecconello et al., Modelling and TOFOR measurements of scattered neutrons at JET. Plasma Phys. Control. Fusion. 52, 085002 (2010). https://doi.org/10.1088/0741-3335/52/8/085002

    Article  Google Scholar 

  22. S.A. Pozzi, M.M. Bourne, S.D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl. Instrum. Methods A 723, 19–23 (2013). https://doi.org/10.1016/j.nima.2013.04.085

    Article  Google Scholar 

  23. E.V. Pagano, M.B. Chatterjee, E. De Filippo et al., Pulse shape discrimination of plastic scintillator EJ 299-33 with radioactive sources. Nucl. Instrum. Methods A 889, 83–88 (2018). https://doi.org/10.1016/j.nima.2018.02.010

    Article  Google Scholar 

  24. M.J. Joyce, M.D. Aspinall, F.D. Cave et al., The design, build and test of a digital analyzer for mixed radiation fields. IEEE Trans. Nucl. Sci. 57, 2625–2630 (2010). https://doi.org/10.1109/TNS.2010.2044245

    Article  Google Scholar 

  25. M.D. Aspinalla, B. D’Mellowa, R.O. Mackina et al., The empirical characterization of organic liquid scintillation detectors by the normalized average of digitized pulse shapes. Nucl. Instrum. Methods A 578, 261–266 (2007). https://doi.org/10.1016/j.nima.2007.05.114

    Article  Google Scholar 

  26. V. Vapnik, Estimation of Dependences Based on Empirical Data (Springer, New York, 2006). https://doi.org/10.1007/0-387-34239-7

    Book  MATH  Google Scholar 

  27. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  28. C.J.C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167 (1998). https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  29. S. Liu, C. Feng, Q. An et al., BES III time-of-flight readout system. IEEE Trans. Nucl. Sci. 57, 419–427 (2010). https://doi.org/10.1109/TNS.2009.2034520

    Article  Google Scholar 

  30. G.S. Gao, R. Partridge, High speed digital TDC for D0 vertex reconstruction. IEEE Trans. Nucl. Sci. 38, 286–289 (1991). https://doi.org/10.1109/23.289311

    Article  Google Scholar 

  31. Z. Kohley, E. Lunderberg, P.A. DeYoung et al., Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4. Nucl. Instrum. Methods A 682, 59–65 (2012). https://doi.org/10.1016/j.nima.2012.04.060

    Article  Google Scholar 

  32. S.F. Naeem, S.D. Clarke, S.A. Pozzi, Validation of Geant4 and MCNPX-PoliMi simulations of fast neutron detection with the EJ-309 liquid scintillator. Nucl. Instrum. Methods A. 714, 98–104 (2013). https://doi.org/10.1016/j.nima.2013.02.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Wen Zheng.

Additional information

This work was partially supported by the National Science and Technology Major Project of Ministry of Science and Technology of China (Nos. 2014GB109003 and 2015GB111002) and the National Natural Science Foundation of China (Nos. 11375195, 11575184, 11375004, and 11775068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, BW., Zhang, W., Wu, TY. et al. Development of the real-time double-ring fusion neutron time-of-flight spectrometer system at HL-2M. NUCL SCI TECH 30, 175 (2019). https://doi.org/10.1007/s41365-019-0702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0702-3

Keywords

Navigation