Skip to main content
Log in

Improved plasma position detection method in EAST Tokamak using fast CCD camera

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To control the steady-state operation of Tokamak plasma, it is crucial to accurately obtain its shape and position. This paper presents a method for use in rapidly detecting plasma configuration during discharge of the Experimental Advanced Superconducting Tokamak device. First, a visible/infrared integrated endoscopy diagnostic system with a large field of view is introduced, and the PCO.edge5.5 camera in this system is used to acquire a plasma discharge image. Based on the analysis of various traditional edge detection algorithms, an improved wavelet edge detection algorithm is then introduced to identify the edge of the plasma. In this method, the local maximum of the modulus of wavelet transform is searched along four gradient directions, and the adaptive threshold is adopted. Finally, the detected boundary is fitted using the least square iterative method to accurately obtain the position of the plasma. Experimental results obtained using the EAST device show that the method presented in this paper can realize expected goals and produce ideal effects; this method thus has significant potential for application in further feedback control of plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Liu, J.R. Luo, G.M. Li et al., The EAST distributed data system. Fusion Eng. Des. 82, 339–343 (2007). https://doi.org/10.1016/j.fusengdes.2007.02.014

    Article  Google Scholar 

  2. F. Zhou, T.F. Ming, Y.M. Wang et al., Development of a high-speed vacuum ultraviolet (VUV) imaging system for the Experimental Advanced Superconducting Tokamak. Rev. Sci. Instrum. 88, 073505 (2017). https://doi.org/10.1063/1.4991856

    Article  Google Scholar 

  3. H.L. Gao, T. Xu, F. Zhang et al., Equilibrium reconstruction and integration of EFIT with diagnoses in J-TEXT Tokamak. Plasma Sci. Technol. 18, 1225–1230 (2016). https://doi.org/10.1088/1009-0630/18/12/14

    Article  Google Scholar 

  4. L. Abdel-Qader, O. Abudayyeh, M.E. Kelly, Analysis of edge-detection techniques for crack identification in bridges. J. Comput. Civil. Eng. 17, 255–263 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)

    Article  Google Scholar 

  5. P. Bao, L. Zhang, X.L. Wu, Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. 27, 1485–1490 (2005). https://doi.org/10.1109/TPAMI.2005.173

    Article  Google Scholar 

  6. C. Grigorescu, N. Petkov, M.A. Westenberg, Contour and boundary detection improved by surround suppression of texture edges. Image Vis. Comput. 22, 609–622 (2004). https://doi.org/10.1016/j.imavis.2003.12.004

    Article  Google Scholar 

  7. Y.C. Yu, J.R. Luo, S.B. Shu et al., Improved algorithm to extraction EAST plasma image boundary. Atomic Eng. Sci. Technol. 49, 2093–2096 (2015). https://doi.org/10.7538/yzk.2015.49.11.2093

    Article  Google Scholar 

  8. S. Yi, D. Labate, G.R. Easley et al., A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18, 929–941 (2009). https://doi.org/10.1109/TIP.2009.2013082

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Steidl, J. Weickert, T. Brox et al., On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM J. Numer. Anal. 42, 686–713 (2004). https://doi.org/10.1137/S0036142903422429

    Article  MathSciNet  MATH  Google Scholar 

  10. V. Velisavljevic, P.L. Dragotti, M. Vetterli, Directional wavelet transforms and frames. Paper presented at the proceedings of ICIP 2002 international conference on image processing, Rochester, NY, USA, 22–25 Sept 2002

  11. S. Mallat, W.L. Hwang, Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38, 617–643 (1992). https://doi.org/10.1109/18.119727

    Article  MathSciNet  MATH  Google Scholar 

  12. M.N. Jia, Q.Q. Yang, F.C. Zhong et al., A tangentially visible fast imaging system on EAST. Plasma Sci. Technol. 17, 991–995 (2015). https://doi.org/10.1088/1009-0630/17/12/02

    Article  Google Scholar 

  13. S.B. Shu, C.Y. Xu, M.W. Chen et al., Plasma image edge detection based on the visible camera in the EAST device. SpringerPlus 5, 2050 (2016). https://doi.org/10.1186/s40064-016-3697-9

    Article  Google Scholar 

  14. Y.F. Zhuang, Research on image edge detection based on wavelet transform and its applications. Master dissertation of Harbin Institute of Technology (2007). (in Chinese)

  15. G.S. Yu, S. Mallat, E. Bacry, Audio denoising by time-frequency block thresholding. IEEE Trans. Signal Process. 56, 1830–1839 (2008). https://doi.org/10.1109/tsp.2007.912893

    Article  MathSciNet  MATH  Google Scholar 

  16. S.M. Mousavi, C.A. Langston, Hybrid seismic denoising using higher-order statistics and improved wavelet block thresholding. Bull. Seismol. Soc. Am. 106, 1380–1393 (2016). https://doi.org/10.1785/0120150345

    Article  Google Scholar 

  17. K. Paliwal, B. Schwerin, K. Wojcicki, Speech enhancement using a minimum mean-square error short-time spectral modulation magnitude estimator. Speech Commun. 54, 282–305 (2012). https://doi.org/10.1016/j.specom.2011.09.003

    Article  Google Scholar 

  18. Y.T. Zhang, H.K. Zhao, J.L. Qian, High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29, 25–56 (2006). https://doi.org/10.1007/s10915-005-9014-3

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Traver, C. Tain, P. Marti, Adaptive-threshold neural spike detection by noise-envelope tracking. Electron. Lett. 43, 1333–1335 (2007). https://doi.org/10.1049/el:20071631

    Article  Google Scholar 

  20. Q. Li, C.A. Micchelli, L.X. Shen et al., A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models. Inverse Probl. 28, 095003 (2012). https://doi.org/10.1088/0266-5611/28/9/095003

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Hommen, M. de Baar, P. Nuij et al., Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape. Rev. Sci. Instrum. 81, 113504 (2010). https://doi.org/10.1063/1.3499219

    Article  Google Scholar 

  22. G. Hommen, M. de Baar, B.P. Duval et al., Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak. Nucl. Fusion 54, 073018 (2014). https://doi.org/10.1088/0029-5515/54/7/073018

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of the EAST team for their contribution to experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Zhong Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11105028 and 51505120) and the National Magnetic Confinement Fusion Science Program of China (No. 2015GB102004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, SB., Yu, CM., Liu, C. et al. Improved plasma position detection method in EAST Tokamak using fast CCD camera. NUCL SCI TECH 30, 24 (2019). https://doi.org/10.1007/s41365-019-0549-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0549-7

Keywords

Navigation