Skip to main content
Log in

Ultrasonic positioning system for the calibration of central detector

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire 35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Adam,  F. An, G. An et al. (JUNO collaboration), in JUNO Conceptual Design Report, arXiv:1508.07166 (2015)

  2. F.P. An,  G.P. An, Q. An et al., (JUNO Collaboration), Neutrino physics with JUNO. J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/030401

    Article  Google Scholar 

  3. L. Zhan, Y.F. Wang, J. Cao et al., Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 78, 111103(R) (2008). https://doi.org/10.1103/PhysRevD.78.111103

    Article  Google Scholar 

  4. Y.F. Li, J. Cao, Y.F. Wang et al., Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013). https://doi.org/10.1103/PhysRevD.88.013008

    Article  Google Scholar 

  5. X.C. Ye, B.X. Yu, X. Zhou et al., Preliminary study of light yield dependence on LAB liquid scintillator composition. Chin. Phys. C 39, 096003 (2015). https://doi.org/10.1088/1674-1137/39/9/096003

    Article  Google Scholar 

  6. X. Zhou, Q.M. Zhang, Q. Liu et al., Densities, isobaric thermal expansion coefficients and isothermal compressibilities of linear alkylbenzene. Phys. Scr. 90, 055701 (2015). https://doi.org/10.1088/0031-8949/90/5/055701

    Article  Google Scholar 

  7. Y.F. Wang, S. Qian, T. Zhao et al., A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Methods A 695, 113–117 (2012). https://doi.org/10.1016/j.nima.2011.12.085

    Article  Google Scholar 

  8. M. He, in TIPP 2017 proceeding of Double Calorimetry System in JUNO, arXiv:1706.08761 (2017)

  9. L. Zhan, Y.F. Wang, J. Cao et al., Experimental requirements to determine the neutrino mass hierarchy using reactor neutrinos. Phys. Rev. D 79, 073007 (2009). https://doi.org/10.1103/PhysRevD.79.073007

    Article  Google Scholar 

  10. X. Qian, D.A. Dwyer, R.D. McKeown et al., Mass hierarchy resolution in reactor anti-neutrino experiments: parameter degeneracies and detector energy response. Phys. Rev. D 87, 033005 (2013). https://doi.org/10.1103/PhysRevD.87.033005

    Article  Google Scholar 

  11. J. Liu, B. Cai, R. Carr et al., Automated calibration system for a high-precision measurement of neutrino mixing angle θ13 with the Daya bay antineutrino detectors. Nucl. Instrum. Methods A 750, 19–37 (2014). https://doi.org/10.1016/j.nima.2014.02.049

    Article  Google Scholar 

  12. F.P. An, J.Z. Bai, A.B. Balantekin et al., (Daya Bay Collaboration), Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 108, 171803 (2012). https://doi.org/10.1103/PhysRevLett.108.171803

    Article  Google Scholar 

  13. M. Xiao, JUNO central detector and calibration strategy, talk on International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN16)

  14. Q. Liu, M. He, X.F. Ding et al. in A Vertex Reconstruction Algorithm in the Central Detector of JUNO, arXiv:1803.09394

  15. B. Møhl, M. Wahlberg, A. Heerfordt, A large-aperture array of nonlinked receivers for acoustic positioning of biological sound sources. J. Acoust. Soc. Am. 109, 434–437 (2001). https://doi.org/10.1121/1.1323462

    Article  Google Scholar 

  16. T. Tian, Underwater positioning and navigation technology (National Defence Industry Press, Beijing, 2007), pp. 20–21

    Google Scholar 

  17. H.S. Hashemi, H. Rivaz, Global time-delay estimation in ultrasound elastography. IEEE Trans. Ultrason Ferroelectr. 64, 1625–1636 (2017). https://doi.org/10.1109/TUFFC.2017.2717933

    Article  Google Scholar 

  18. M. Georgiev, R. Bregovic, A. Gotchev, Time-of-flight range measurement in low-sensing environment: noise analysis and complex-domain non-local denoising. IEEE Trans. Image Process. 27, 2911–2926 (2018). https://doi.org/10.1109/TIP.2018.2807126

    Article  MathSciNet  Google Scholar 

  19. J.F. Wang, N. Zou, F. Jin, Research on integrated positioning approach based on long/ultra-short baseline. J. Acoust. Soc. Am. 143, 1958 (2018). https://doi.org/10.1121/1.5036434

    Article  Google Scholar 

  20. Y. Watanabe, H. Ochi, T. Shimura, The study on data transmission with short positioning pulse in deep sea. J. Acoust. Soc. Am. 120, 3049–3058 (2006). https://doi.org/10.1121/1.4787261

    Article  Google Scholar 

  21. Z. Li, G. Qi, Z.X. Sun, A short baseline-based real-time high-precision ROV position system. High Technol. Lett. 23(12), 1230–1235 (2013)

    Google Scholar 

  22. D.J. Thomson, S.E. Dosso, D.R. Barclay, Modeling AUV localization error in a long baseline acoustic positioning system. IEEE J. Ocean. Eng. 134, 1–14 (2017). https://doi.org/10.1109/JOE.2017.2771898

    Article  Google Scholar 

  23. X. Liu, N. Zou, Y. Zhang, Methods of unwrapping phase ambiguity and selecting direct sounds in an ultra short baseline positioning system. J. Acoust. Soc. Am. 142, 2731 (2017). https://doi.org/10.1121/1.5014978

    Article  Google Scholar 

  24. D. Sun, J. Gu, J. Zhang, et al. Design of high accuracy ultra short baseline underwater acoustic position system, in IEEE International Conference on Signal Processing, Communications and Computing. (Xiamen, China, 2017)

  25. S. Zhao, C.J. Qiao, Y.K. Wang., On the navigation positioning technologies in AUV underwater docking, in Proceedings of the 31st Chinese Control Conference, (Hefei, China, 2012)

  26. Y.Y. Wang, C.J. Qiao, S.Y. Liu. Design of autonomous underwater vehicle positioning system, in 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), (Xi’an, China, 2016)

  27. L. Paull, S. Saeedi, M. Seto et al., AUV navigation and localization: a review. IEEE J. Ocean. Eng. 39(1), 131–149 (2014). https://doi.org/10.1109/JOE.2013.2278891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA10010800) and the “Fundamental Research Funds for the Central Universities” (No. 3102017zy010).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, GL., Liu, JL., Wang, Q. et al. Ultrasonic positioning system for the calibration of central detector. NUCL SCI TECH 30, 5 (2019). https://doi.org/10.1007/s41365-018-0530-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0530-x

Keywords

Navigation