Skip to main content

Advertisement

Log in

Mean-field description of heavy-ion scattering at low energies and fusion

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The nuclear mean-field potential built up during the \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) and \({}^{16}\hbox {O}+{}^{16}\hbox {O}\) collisions at low energies relevant for the carbon- and oxygen-burning processes is constructed within the double-folding model (DFM) using the realistic ground-state densities of \(^{12}\hbox {C}\) and \(^{16}\)O, and CDM3Yn density-dependent nucleon–nucleon (NN) interaction. The rearrangement term, indicated by the Hugenholtz–van Hove theorem for the single-particle energy in nuclear matter, is properly considered in the DFM calculation. To validate the use of the density-dependent NN interaction at low energies, an adiabatic approximation was suggested for the dinuclear overlap density. The reliability of the nucleus–nucleus potential predicted through this low-energy version of the DFM was tested in the optical model (OM) analysis of the elastic \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) and \({}^{16}\hbox {O}+{}^{16}\hbox {O}\) scattering data at energies below 10 MeV/nucleon. These OM results provide a consistently good description of the elastic angular distributions and 90\(^\circ\) excitation function. The dinuclear mean-field potential predicted by the DFM is further used to determine the astrophysical S factor of the \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) and \({}^{16}\hbox {O}+{}^{16}\hbox {O}\) fusions in the barrier penetration model. Without any adjustment of the potential strength, our results reproduce the non-resonant behavior of the S factor of the \({}^{12}\hbox {C}+{}^{12}\hbox {C}\) and \({}^{16}\hbox {O}+{}^{16}\hbox {O}\) fusions very well over a wide range of energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Press, Weinheim, 2015)

    Google Scholar 

  2. W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Thermonuclear reaction rates, II. Ann. Rev. Astron. Astrophys. 13, 69–112 (1975). https://doi.org/10.1146/annurev.aa.13.090175.000441

    Article  Google Scholar 

  3. K.U. Kettner, H. Lorenz-Wirzba, C. Rolfs, The \({}^{12}\text{C}+{}^{12}\text{C}\) reaction at subcoulomb energies (I). Z. Phys. A 298, 65–75 (1980). https://doi.org/10.1007/BF01416030

    Article  Google Scholar 

  4. W. Treu, H. Fröhlich, W. Galster et al., Total reaction cross section for \({}^{12}\text{C }+{}^{12}\text{C }\) in the vicinity of the Coulomb barrier. Phys. Rev. C 22, 2462–2464 (1980). https://doi.org/10.1103/PhysRevC.22.2462

    Article  Google Scholar 

  5. E.F. Aguilera, P. Rosales, E. Martinez-Quiroz et al., New \(\gamma\)-ray measurements for \({}^{12}\text{C }+{}^{12}\text{C }\) sub-Coulomb fusion: toward data unification. Phys. Rev. C 73, 064601 (2006). https://doi.org/10.1103/PhysRevC.73.064601

    Article  Google Scholar 

  6. L. Barrón-Palos, E.F. Aguilera, J. Aspiazu et al., Absolute cross sections measurement for the \({}^{12}\text{C }+{}^{12}\text{C }\) system at astrophysically relevant energies. Nucl. Phys. A 779, 318–332 (2006). https://doi.org/10.1016/j.nuclphysa.2006.09.004

    Article  Google Scholar 

  7. L.R. Gasques, A.V. Afanasjev, E.F. Aguilera et al., Nuclear fusion in dense matter: reaction rate and carbon burning. Phys. Rev. C 72, 025806 (2005). https://doi.org/10.1103/PhysRevC.72.025806

    Article  Google Scholar 

  8. T. Spillane, F. Raiola, C. Rolfs et al., \({}^{12}\text{C }+{}^{12}\text{C }\) fusion reactions near the Gamow energy. Phys. Rev. Lett. 98, 122501 (2007). https://doi.org/10.1103/PhysRevLett.98.122501

    Article  Google Scholar 

  9. B. Bucher, X.D. Tang, X. Fang et al., First direct measurement of \({}^{12}\text{C }({}^{12}\text{C }, n){}^{23}\text{Mg }\) at stellar energies. Phys. Rev. Lett. 114, 251102 (2015). https://doi.org/10.1103/PhysRevLett.114.251102

    Article  Google Scholar 

  10. C.L. Jiang, D. Santiago-Gonzalez, S. Almaraz-Calderon et al., Reaction rate for carbon burning in massive stars. Phys. Rev. C 97, 012801(R) (2018). https://doi.org/10.1103/PhysRevC.97.012801

    Article  Google Scholar 

  11. A. Tumino, C. Spitaleri, M. La Cognata et al., An increase in the \({}^{12}\text{C }+{}^{12}\text{C }\) fusion rate from resonances at astrophysical energies. Nature 557, 687–690 (2018). https://doi.org/10.1038/s41586-018-0149-4

    Article  Google Scholar 

  12. A. Diaz-Torres, M. Wiescher, Characterizing the astrophysical S factor for \({}^{12}\text{C }+{}^{12}\text{C }\) fusion with wave-packet dynamics. Phys. Rev. C 97, 055802 (2018). https://doi.org/10.1103/PhysRevC.97.055802

    Article  Google Scholar 

  13. H. Spinka, H. Winkler, Experimental determination of the total reaction cross section of the stellar nuclear reaction \({}^{16}\text{O }+{}^{16}\text{O }\). Nucl. Phys. A 233, 456–494 (1974). https://doi.org/10.1016/0375-9474(74)90469-2

    Article  Google Scholar 

  14. G. Hulke, C. Rolfs, H.P. Trautvetter, Comparison of the fusion reactions \({}^{12}\text{C }+{}^{20}\text{Ne }\) and \({}^{16}\text{O }+{}^{16}\text{O }\) near the Coulomb barrier. Z. Phys. A 297, 161–183 (1980). https://doi.org/10.1007/BF01421473

    Article  Google Scholar 

  15. S.C. Wu, C.A. Barnes, Fusion and elastic scattering cross sections for the \({}^{16}\text{O }+{}^{16}\text{O }\) reactions near the Coulomb barrier. Nucl. Phys. A 422, 373–396 (1984). https://doi.org/10.1016/0375-9474(84)90523-2

    Article  Google Scholar 

  16. J.G. Duarte, L.R. Gasques, J.R.B. Oliveira et al., Measurement of fusion cross sections for \({}^{16}\text{O }+{}^{16}\text{O }\). J. Phys. G Nucl. Part. Phys. 42, 065102 (2015). https://doi.org/10.1088/0954-3899/42/6/065102

    Article  Google Scholar 

  17. C.L. Jiang, K.E. Rehm, B.B. Back, R.V.F. Janssens, Expectations for \({}^{12}\text{ C }\) and \({}^{16}\text{ O }\) induced fusion cross sections at energies of astrophysical interest. Phys. Rev. C 75, 015803 (2007). https://doi.org/10.1103/PhysRevC.75.015803

    Article  Google Scholar 

  18. VYu. Denisov, N.A. Pilipenko, Fusion of deformed nuclei: \({}^{12}\text{ C }+{}^{12}\text{ C }\). Phys. Rev. C 81, 025805 (2010). https://doi.org/10.1103/PhysRevC.81.025805

    Article  Google Scholar 

  19. M. Notani, H. Esbensen, X. Fang et al., Correlation between the \({}^{12}\text{ C }+{}^{12}\text{ C }\), \({}^{12}\text{ C }+{}^{13}\text{ C }\), and \({}^{13}\text{ C }+{}^{13}\text{ C }\) fusion cross sections. Phys. Rev. C 85, 014607 (2012). https://doi.org/10.1103/PhysRevC.85.014607

    Article  Google Scholar 

  20. C.L. Jiang, B.B. Back, H. Esbensen et al., Origin and consequences of \({}^{12}\text{ C }+{}^{12}\text{ C }\) fusion resonances at deep sub-barrier energies. Phys. Rev. Lett. 110, 072701 (2013). https://doi.org/10.1103/PhysRevLett.110.072701

    Article  Google Scholar 

  21. M. Assunção, P. Descouvemont, Role of the Hoyle state in \({}^{12}\text{ C }+{}^{12}\text{ C }\) fusion. Phys. Lett. B 723, 355–359 (2013). https://doi.org/10.1016/j.physletb.2013.05.030

    Article  MATH  Google Scholar 

  22. A.A. Aziz, N. Yusof, M.Z. Firihu, H.A. Kassim, Reliability of the double-folding potential for fusion cross sections of light systems. Phys. Rev. C 91, 015811 (2015). https://doi.org/10.1103/PhysRevC.91.015811

    Article  Google Scholar 

  23. H. Esbensen, Coupled-channels calculations of \({}^{16}\text{ O }+{}^{16}\text{ O }\) fusion. Phys. Rev. C 77, 054608 (2008). https://doi.org/10.1103/PhysRevC.77.054608

    Article  Google Scholar 

  24. G. Kocak, M. Karakoc, I. Boztosun, A.B. Balantekin, Effects of \(\alpha\)-cluster potentials for the \({}^{16}\text{O }+{}^{16}\text{O }\) fusion reaction and \(S\) factor. Phys. Rev. C 81, 024615 (2010). https://doi.org/10.1103/PhysRevC.81.024615

    Article  Google Scholar 

  25. C. Simenel, R. Keser, A.S. Umar, V.E. Oberacker, Microscopic study of \({}^{16}\text{O }+{}^{16}\text{O }\) fusion. Phys. Rev. C 88, 024617 (2013). https://doi.org/10.1103/PhysRevC.88.024617

    Article  Google Scholar 

  26. C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett. 31, 766–769 (1973). https://doi.org/10.1103/PhysRevLett.31.766

    Article  Google Scholar 

  27. K. Hagino, N. Takigawa, Subbarrier fusion reactions and many-particle quantum tunneling. Prog. Theor. Phys. 128, 1061–1106 (2012). https://doi.org/10.1143/PTP.128.1061

    Article  Google Scholar 

  28. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Recent developments in heavy-ion fusion reactions. Rev. Mod. Phys. 86, 317–360 (2014). https://doi.org/10.1103/RevModPhys.86.317

    Article  Google Scholar 

  29. M.E. Brandan, G.R. Satchler, The interaction between light heavy-ions and what it tells us. Phys. Rep. 285, 143–243 (1997). https://doi.org/10.1016/S0370-1573(96)00048-8

    Article  Google Scholar 

  30. Y. Kondō, M.E. Brandan, G.R. Satchler, Shape resonances and deep optical potentials: a mean-field description of \({}^{12}\text{C }+{}^{12}\text{C }\) scattering at low energies. Nucl. Phys. A 637, 175–200 (1998). https://doi.org/10.1016/S0375-9474(98)00212-7

    Article  Google Scholar 

  31. G.R. Satchler, W.G. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep. 55, 183–254 (1979). https://doi.org/10.1016/0370-1573(79)90081-4

    Article  Google Scholar 

  32. D.T. Khoa, W. von Oertzen, H.G. Bohlen, Double-folding model for heavy-ion optical potential: revised and applied to study \({}^{12}\text{C }\) and \({}^{16}\text{O }\) elastic scattering. Phys. Rev. C 49, 1652–1668 (1994). https://doi.org/10.1103/PhysRevC.49.1652

    Article  Google Scholar 

  33. D.T. Khoa, G.R. Satchler, W. von Oertzen, Nuclear incompressibility and density dependent \(NN\) interactions in the folding model for nucleus–nucleus potentials. Phys. Rev. C 56, 954–969 (1997). https://doi.org/10.1103/PhysRevC.56.954

    Article  Google Scholar 

  34. D.T. Khoa, G.R. Satchler, Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon-nucleon interaction. Nucl. Phys. A 668, 3–41 (2000). https://doi.org/10.1016/S0375-9474(99)00680-6

    Article  Google Scholar 

  35. D.T. Khoa, W. von Oertzen, H.G. Bohlen, S. Ohkubo, Nuclear rainbow scattering and nucleus-nucleus potential. J. Phys. G 34, R111–R164 (2007). https://doi.org/10.1088/0954-3899/34/3/R01

    Article  Google Scholar 

  36. D.T. Khoa, \(\alpha\)-nucleus optical potential in the double-folding model. Phys. Rev. C 63, 034007 (2001). https://doi.org/10.1103/PhysRevC.63.034007

    Article  Google Scholar 

  37. D.T. Khoa, N.H. Phuc, D.T. Loan, B.M. Loc, Nuclear mean field and double-folding model of the nucleus-nucleus optical potential. Phys. Rev. C 94, 034612 (2016). https://doi.org/10.1103/PhysRevC.94.034612

    Article  Google Scholar 

  38. J.E. Poling, E. Norbeck, R.R. Carlson, Elastic scattering of lithium by \({}^{9}\text{Be }\), \({}^{10}\text{B }\), \({}^{12}\text{C }\), \({}^{13}\text{C }\), \({}^{16}\text{O }\), and \({}^{28}\text{Si }\) from 4 to 63 MeV. Phys. Rev. C 13, 648–660 (1976). https://doi.org/10.1103/PhysRevC.13.648

    Article  Google Scholar 

  39. N. Anantaraman, H. Toki, G.F. Bertsch, An effective interaction for inelastic scattering derived from the Paris potential. Nucl. Phys. A 398, 269–278 (1983). https://doi.org/10.1016/0375-9474(83)90487-6

    Article  Google Scholar 

  40. P.E. Hodgson, Nucleon removal and rearrangement energies. Rep. Prog. Phys. 38, 847–902 (1975). https://doi.org/10.1088/0034-4885/38/7/002

    Article  Google Scholar 

  41. D.T. Loan, B.M. Loc, D.T. Khoa, Extended Hartree-Fock study of the single-particle potential: the nuclear symmetry energy, nucleon effective mass, and folding model of the nucleon optical potential. Phys. Rev. C 92, 034304 (2015). https://doi.org/10.1103/PhysRevC.92.034304

    Article  Google Scholar 

  42. M. Gennari, M. Vorabbi, A. Calci, P. Navrátil, Microscopic optical potentials derived from ab initio translationally invariant nonlocal one-body densities. Phys. Rev. C 97, 034619 (2018). https://doi.org/10.1103/PhysRevC.97.034619

    Article  Google Scholar 

  43. S. Goriely, M. Samyn, J.M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers. Phys. Rev. C 75, 064312 (2007). https://doi.org/10.1103/PhysRevC.75.064312

    Article  Google Scholar 

  44. K. Siwek-Wilczýnska, J. Wilczýnski, Nucleus-nucleus fusion energy thresholds and the adiabatic fusion potential. Phys. Rev. C 64, 024611 (2001). https://doi.org/10.1103/PhysRevC.64.024611

    Article  Google Scholar 

  45. T. Ichikawa, K. Hagino, A. Iwamoto, Signature of smooth transition from sudden to adiabatic states in heavy-ion fusion reactions at deep sub-barrier energies. Phys. Rev. Lett. 103, 202701 (2009). https://doi.org/10.1103/PhysRevLett.103.202701

    Article  Google Scholar 

  46. Y. Taniguchi, Y. Kanada-Enýo, T. Suhara, Adiabatic internuclear potentials obtained by energy variation with the internuclear-distance constraint. Prog. Theor. Exp. Phys. 2013, 043D04 (2013). https://doi.org/10.1093/ptep/ptt002

    Article  Google Scholar 

  47. T. Ichikawa, Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach. Phys. Rev. C 92, 064604 (2015). https://doi.org/10.1103/PhysRevC.92.064604

    Article  Google Scholar 

  48. I. Reichstein, F.B. Malik, Dependence of \({}^{16}\text{O }+{}^{16}\text{O }\) potential on the density ansatz. Phys. Lett. B 37, 344–346 (1971). https://doi.org/10.1016/0370-2693(71)90197-3

    Article  Google Scholar 

  49. N. Ohtsuka, R. Linden, A. Faessler, F.B. Malik, Real and imaginary parts of the microscopic optical potential between nuclei in the sudden and adiabatic approximation and its application to medium energy \({}^{12}\text{C }+{}^{12}\text{C }\) scattering. Nucl. Phys. A 465, 550–572 (1987). https://doi.org/10.1016/0375-9474(87)90364-2

    Article  Google Scholar 

  50. K.W. McVoy, M.E. Brandan, The \(90^\circ\) excitation function for elastic \({}^{12}\text{C }+{}^{12}\text{C }\) scattering: the importance of Airy elephants. Nucl. Phys. A 542, 295–309 (1992). https://doi.org/10.1016/0375-9474(92)90218-9

    Article  Google Scholar 

  51. J. Raynal, Computing as a Language of Physics, IAEA, Vienna p.75 (1972); coupled-channel code ECIS97 (unpublished)

  52. R.G. Stokstad, R.M. Wieland, G.R. Satchler et al., Elastic and inelastic scattering of \({}^{12}\text{C }\) by \({}^{12}\text{C }\) from \(E_{{\rm c.m.}} = 35-63 \text{ MeV }\). Phys. Rev. C 20, 655-669 (1979). https://doi.org/10.1103/PhysRevC.20.655

  53. A. Morsad, F. Haas, C. Beck, R.M. Freeman, Detailed energy dependence of the elastic and inelastic \({}^{12}\text{C }+{}^{12}\text{C }\) scattering between 5 and 10 MeV/nucleon. Z. Phys. A 338, 61–65 (1991). https://doi.org/10.1007/BF01279115

    Article  Google Scholar 

  54. W. Reilly, R. Wieland, A. Gobbi et al., A comparative study of the elastic scattering in the \({}^{12}\text{C }\), \(^{14}\text{N }\) and \({}^{16}\text{O }\) identical-particle systems. Nuov. Cim. A 13, 897–912 (1973). https://doi.org/10.1007/BF02804157

    Article  Google Scholar 

  55. M.E. Brandan, M. Rodrguez-Villafuerte, A. Ayala, \({}^{12}\text{C }+{}^{12}\text{C }\) elastic scattering analysis above \(E/A=6\text{ MeV }\) using deep real potentials. Phys. Rev. C 41, 1520–1529 (1990). https://doi.org/10.1103/PhysRevC.41.1520

    Article  Google Scholar 

  56. B. Buck, P.D.B. Hopkins, A.C. Merchant, A \({}^{12}\text{C }+{}^{12}\text{C }\) cluster model of \({}^{24}\text{Mg }\). Nucl. Phys. A 513, 75–114 (1990). https://doi.org/10.1016/0375-9474(90)90344-L

    Article  Google Scholar 

  57. S.C. Pieper, R.B. Wiringa, V.R. Pandharipande, Variational calculation of the ground state of \({}^{16}\text{O }\). Phys. Rev. C 46, 1741–1756 (1992). https://doi.org/10.1103/PhysRevC.46.1741

    Article  Google Scholar 

  58. R.H. Siemssen, J.V. Maher, A. Weidinger, D.A. Bromley, Excitation-function structure in \({}^{16}\text{O }+{}^{16}\text{O }\) scattering. Phys. Rev. Lett. 19, 369–372 (1967). https://doi.org/10.1103/PhysRevLett.19.369

    Article  Google Scholar 

  59. J.V. Maher, M.W. Sachs, R.H. Siemssen et al., Nuclear interaction of oxygen with oxygen. Phys. Rev. 188, 1665–1683 (1969). https://doi.org/10.1103/PhysRev.188.1665

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Hoang Chien.

Additional information

The present research has been supported, in part, by the National Foundation for Scientific and Technological Development (NAFOSTED Project No. 103.04-2017.317)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoa, D.T., Chien, L.H., Cuong, D.C. et al. Mean-field description of heavy-ion scattering at low energies and fusion. NUCL SCI TECH 29, 183 (2018). https://doi.org/10.1007/s41365-018-0517-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0517-7

Keywords

Navigation