Skip to main content
Log in

Evaluation of radiation environment in the target area of fragment separator HFRS at HIAF

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this work, the radiation environment in the target area of a fragment separator is evaluated using FLUKA code. The energy deposition in quadrupole coils is presented to provide guidance for a radiation-resistant magnets design. Results show that neutrons dominate in the prompt radiation field. A compact shielding design is recommended for high radiation areas along with the minimization of air activation in the tunnel in order to minimize the radiation effect on nearby beam lines. The displacements per atom results for the graphite target and copper coils indicate that the effect is insignificant. In addition, the activation level of the target is estimated for workers under possible hands-on maintenance condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Tanihata, H. Hamagaki, O. Hashimoto, Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  Google Scholar 

  2. B. Harss, P. R. C., K.E. Rehm, Production of radioactive ion beams using the in-flight technique. Rev. Sci. Instrum. 71, 380–387 (2000). https://doi.org/10.1063/1.1150211

    Article  Google Scholar 

  3. S. Agosteo, G. Fehrenbacher, M. Silari, Attenuation curves in concrete of neutrons from 1 GeV/u C and U ions on a Fe target for the shielding design of RIB in-flight facilities. Nucl. Instrum. Methods B. 226, 231–242 (2004). https://doi.org/10.1016/j.nimb.2004.06.038

    Article  Google Scholar 

  4. Y. Blumenfeld, T. Nilsson, P. Van Duppen, Facilities and methods for radioactive ion beam production. Phys. Scr. T152, 014023 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014023

    Article  Google Scholar 

  5. Z.Y. Sun, W.L. Zhan, Z.Y. Guo, RIBLL, the radioactive ion beam line in Lanzhou. Nucl. Instrum. Methods A. 503, 496–503 (2003). https://doi.org/10.1016/S0168-9002(03)01005-2

    Article  Google Scholar 

  6. J.J. He, S.W. Xu, P. Ma, A new low-energy radioactive beam line for nuclear astrophysics studies in China. Nucl. Instrum. Methods A. 680, 43–47 (2012). https://doi.org/10.1016/j.nima.2012.03.040

    Article  Google Scholar 

  7. Y.L. Ye, Development of RIB facilities in Asia. Nucl. Instrum. Methods B. 317, 201–203 (2013). https://doi.org/10.1016/j.nimb.2013.07.053

    Article  Google Scholar 

  8. Z.Y. Sun, W.L. Zhan, Z.Y. Guo, Separation and identification of isotopes produced from 20Ne + Be reaction by radioactive ion beam line in Lanzhou. Chin. Phys. Lett. 15, 790–792 (1998). https://doi.org/10.1088/0256-307X/15/11/004

    Article  Google Scholar 

  9. J.W. Xia, W.L. Zhan, B.W. Wei, The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl. Instrum. Methods A. 488, 11–25 (2002). https://doi.org/10.1016/S0168-9002(02)00475-8

    Article  Google Scholar 

  10. G. Münzenberg, Radioactive beams at GSI. Prog. Part. Nucl. Phys 46, 335–342 (2001). https://doi.org/10.1016/S0146-6410(01)00140-5

    Article  Google Scholar 

  11. T. Kubo, M. Ishihara, N. Inabe, The RIKEN radioactive beam facility. Nucl. Instrum. Methods B. 70, 309–319 (1992). https://doi.org/10.1016/0168-583X(92)95947-P

    Article  Google Scholar 

  12. S. Gales, SPIRAL2 at GANIL: next generation of ISOL facility for intense secondary radioactive ion beams. Nucl. Phys. A. 834, 717c–723c (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.130

    Article  Google Scholar 

  13. P. Bricault, ISAC-I and ISAC-II: present status and future perspectives. Eur. Phys. J. Spec. Top 150, 227–232 (2007). https://doi.org/10.1140/epjst/e2007-00310-9

    Article  Google Scholar 

  14. Y. Romanets, A.P. Bernardes, A. Dorsival, Radiation protection, radiation safety and radiation shielding assessment of HIE-ISOLDE. Radiat. Prot. Dosim. 155, 351–363 (2013). https://doi.org/10.1093/rpd/nct005

    Article  Google Scholar 

  15. M. Grieser, Y.A. Litvinov, R. Raabe et al., Storage ring at HIE-ISOLDE. Eur. Phys. J. Spec. Top 207, 1–117 (2012). https://doi.org/10.1140/epjst/e2012-01599-9

    Article  Google Scholar 

  16. X. Chen, L.N. Sheng, J.C. Yang, Separation performance research of superconducting fragment separator. High. Power. Laser. Part. Beams. 29, 128–135 (2017). https://doi.org/10.11884/HPLPB201729.160552. (in Chinese)

    Article  Google Scholar 

  17. D.J. Morrissey, B.M. Sherrill, Radioactive nuclear beam facilities based on projectile fragmentation. Philos. Trans. R. Soc. B. 356, 1985–2006 (1998). https://doi.org/10.1098/rsta.1998.0260

    Article  Google Scholar 

  18. P.K. Sarkar, Neutron dosimetry in the particle accelerator environment. Radiat. Meas. 45, 1476–1483 (2010). https://doi.org/10.1016/j.radmeas.2010.07.001

    Article  Google Scholar 

  19. C.B. Fulmer, H.M. Butler, W.F. Ohnesorge et al., Fast neutron dose equivalent rates in heavy ion target areas. IEEE Trans. Nucl. Sci 26, 2216–2218 (1979). https://doi.org/10.1109/TNS.1979.4329842

    Article  Google Scholar 

  20. G. Battistoni, F. Cerutti, A. Fassò, The FLUKA code: description and benchmarking. AIP Conf. Proc. 896, 31–49 (2007). https://doi.org/10.1063/1.2720455

    Article  Google Scholar 

  21. F. Ballarini, G. Battistoni, M. Brugger et al., The physics of the FLUKA code: recent developments. Adv. Space Res. 40, 1339–1349 (2007). https://doi.org/10.1016/j.asr.2007.05.0315

    Article  Google Scholar 

  22. N.A. Tahir, H. Weick, H. Iwase, Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility. J. Phys D. Appl. Phys. 38, 1828 (2005). https://doi.org/10.1088/0022-3727/38/11/023

    Article  Google Scholar 

  23. G. Heidenreich, Carbon and beryllium targets at PSI. AIP Conf. Proc. 642, 122–124 (2002). https://doi.org/10.1063/1.1522602

    Article  Google Scholar 

  24. A. Yoshida, K. Morita, K. Morimoto, High-power rotating wheel targets at RIKEN. Nucl. Instrum. Methods A. 521, 65–71 (2004). https://doi.org/10.1016/j.nima.2003.11.408

    Article  Google Scholar 

  25. R.E. Macfarlane, A.C. Kahler, Methods for processing ENDF/B-VII with NJOY. Nucl. Data. Sheets 111, 2739–2890 (2010). https://doi.org/10.1016/j.nds.2010.11.001

    Article  Google Scholar 

  26. M.E. Sawan, P.L. Walstrom, Superconducting magnet radiation effects in fusion reactors. Fus. Sci. Technol. 10, 741–746 (1986). https://doi.org/10.13182/FST86-A24829

    Article  Google Scholar 

  27. M. Winkler, M. Svedentsov, K.H. Behr, Radiation resistant quadrupole magnet for the Super-FRS at FAIR. IEEE Trans. Appl. Supercond. 16, 415–418 (2006). https://doi.org/10.1109/TASC.2005.864253

    Article  Google Scholar 

  28. A.F. Zeller, V. Blideanu, R.M. Ronningen et al., Radiation resistant magnets for the RIA fragment separator. in Proceedings of IPAC05, Knoxville, USA, 2005. https://doi.org/10.1109/PAC.2005.1591056

  29. R. Ronningen, G. Bollen, V. Blideanu et al., Radiation simulations and development of concepts for high power beam dumps, catchers and pre-separator area layouts for the fragment separators for RIA. in Proceedings of IPAC05, Knoxville, USA, 2005. https://doi.org/10.1109/PAC.2005.1591550

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Wu Su.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2017YFC0107700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Su, YW., Li, WY. et al. Evaluation of radiation environment in the target area of fragment separator HFRS at HIAF. NUCL SCI TECH 29, 147 (2018). https://doi.org/10.1007/s41365-018-0479-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0479-9

Keywords

Navigation