Skip to main content

Advertisement

Log in

Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To study ultrafast processes at the sub-picosecond level, novel methods based on coherent harmonic generation technologies have been proposed to generate ultrashort radiation pulses in existing ring-based light sources. Using the High Energy Photon Source as an example, we numerically test the feasibility of implementing one coherent harmonic generation technology, i.e., the echo-enabled harmonic generation (EEHG) scheme, in a diffraction-limited storage ring (DLSR). Two different EEHG element layouts are considered, and the effect of the EEHG process on the electron beam quality is also analyzed. Studies suggest that soft X-ray pulses, with pulse lengths of a few femtoseconds and peak powers of up to 1 MW, can be generated by using the EEHG scheme, while causing little perturbation to the regular operation of a DLSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6: a
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Hettel, DLSR design and plans: an international overview. J. Synchrotron Radiat. 21, 843–855 (2014). https://doi.org/10.1107/S1600577514011515

    Article  Google Scholar 

  2. M. Eriksson, J.F. van der Veen, C. Quitmann, Diffraction-limited storage rings—a window to the science of tomorrow. J. Synchrotron Radiat. 21, 837–842 (2014). https://doi.org/10.1107/S1600577514019286

    Article  Google Scholar 

  3. J.D. Brock, Watching atoms move. Science 315, 609–610 (2017). https://doi.org/10.1126/science.1136895

    Article  Google Scholar 

  4. A.A. Zholents, M.S. Zolotorev, Femtosecond X-ray pulses of synchrotron radiation. Phys. Rev. Lett. 76, 912 (1996). https://doi.org/10.1103/PhysRevLett.76.912

    Article  Google Scholar 

  5. R.W. Schoenlein, S. Chattopadhyay, H.H.W. Chong et al., Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000). https://doi.org/10.1126/science.287.5461.2237

    Article  Google Scholar 

  6. S. Khan, K. Holldack, T. Kachel et al., Femtosecond undulator radiation from sliced electron bunches. Phys. Rev. Lett. 97, 074801 (2006). https://doi.org/10.1103/PhysRevLett.97.074801

    Article  Google Scholar 

  7. B. Girard, Y. Lapierre, J.M. Ortega et al., Optical frequency multiplication by an optical klystron. Phys. Rev. Lett. 53, 2405 (1984). https://doi.org/10.1103/PhysRevLett.53.2405

    Article  Google Scholar 

  8. G. Stupakov, Using the beam–-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). https://doi.org/10.1103/PhysRevLett.102.074801

    Article  Google Scholar 

  9. R. Molo, M. Höner, H. Huck et al., EEHG and Femtoslicing at DELTA, in Proceedings of FEL2013, New York

  10. C. Evain, A. Loulergue, A. Nadji et al., Soft X-ray femtosecond coherent undulator radiation in a storage ring. New J. Phys. 14, 023003 (2012). https://doi.org/10.1088/1367-2630/14/2/023003

    Article  Google Scholar 

  11. W. Gao, H. Li, L. Wang, Preliminary study of EEHG-based superradiant undulator radiation at the HLS-II storage ring. Chin. Phys. C 41, 078101 (2017). https://doi.org/10.1088/1674-1137/41/7/078101

    Article  Google Scholar 

  12. H. Deng, C. Feng, Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett. 111, 084801 (2013). https://doi.org/10.1103/PhysRevLett.111.084801

    Article  Google Scholar 

  13. F. Chao, B. Jiang, Z. Qi et al., Storage ring based PEHG FEL for EUV lithography storage ring based PEHG FEL for EUV lithography, in Compact EUV X-ray Light Sources, (2016), p. EM3A.1. https://doi.org/10.1364/euvxray.2016.em3a.1

  14. G. Xu, J. Yi, Y. Peng, ESRF-type lattice design and optimization for the High Energy Photon Source. Chin. Phys. C 2, 027001 (2016). https://doi.org/10.1088/1674-1137/40/2/027001

    Article  Google Scholar 

  15. S. Reiche, GENESIS 1.3: a full 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A 429, 243–248 (1999). https://doi.org/10.1016/S0168-9002(99)00114-X

    Article  Google Scholar 

  16. M. Borland, Simple method for particle tracking with coherent synchrotron radiation. Phys. Rev. Spec. Top. Accel. Beams 4, 070701 (2001). https://doi.org/10.1103/PhysRevSTAB.4.070701

    Article  Google Scholar 

  17. D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. Spec. Top. Accel. Beams 12, 030702 (2009). https://doi.org/10.1103/PhysRevSTAB.12.030702

    Article  Google Scholar 

  18. Z. Huang, K.J. Kim, Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane. Phys. Rev. Spec. Top. Accel. Beams 5, 074401 (2002). https://doi.org/10.1103/PhysRevSTAB.5.074401

    Article  Google Scholar 

  19. L. Yu, Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991). https://doi.org/10.1103/PhysRevA.44.5178

    Article  Google Scholar 

  20. L. Yu, J. Wu, Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods A 483, 493–498 (2002). https://doi.org/10.1016/S0168-9002(02)00368-6

    Article  Google Scholar 

  21. D. Xiang, W. Wan, Generating ultrashort coherent soft X-ray radiation in storage rings using angular-modulated electron beams. Phys. Rev. Lett. 104, 084803 (2010). https://doi.org/10.1103/PhysRevLett.104.084803

    Article  Google Scholar 

  22. H. Li, Q. Jia, Z. Zhao, Generation of high harmonic free electron laser with phase-merging effect. Nucl. Instrum. Methods A 847, 42–46 (2017). https://doi.org/10.1016/j.nima.2016.11.018

    Article  Google Scholar 

  23. J. Rothhardt, S. Hädrich, J. Delagnes et al., High average power near-infrared few-cycle lasers. Laser Photonics Rev. 11, 1700043 (2017). https://doi.org/10.1002/lpor.201700043

    Article  Google Scholar 

  24. Y. Jiao, Z. Duan, Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source. Nucl. Instrum. Methods A 841, 97–103 (2017). https://doi.org/10.1016/j.nima.2016.10.037

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank Dr. Chao Feng, Tong Zhang, Xiao-Yu Li, Xiao-Fan Wang, Zheng Qi, Hai-Xiao Deng, and Yi Wu for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Jiao.

Additional information

This work was supported by National Natural Science Foundation of China (No. 11475202, 11405187), the Youth Innovation Association of Chinese Academy of Sciences, and Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WH., Zhou, GQ. & Jiao, Y. Generating femtosecond coherent X-ray pulses in a diffraction-limited storage ring with the echo-enabled harmonic generation scheme. NUCL SCI TECH 29, 143 (2018). https://doi.org/10.1007/s41365-018-0476-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0476-z

Keywords

Navigation