Skip to main content
Log in

Hybrid reconstruction algorithm for computed tomography based on diagonal total variation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Inspired by total variation (TV), this paper represents a new iterative algorithm based on diagonal total variation (DTV) to address the computed tomography image reconstruction problem. To improve the quality of a reconstructed image, we used DTV to sparsely represent images when iterative convergence of the reconstructed algorithm with TV-constraint had no effect during the reconstruction process. To investigate our proposed algorithm, the numerical and experimental studies were performed, and root-mean-square error (RMSE) and structure similarity (SSIM) were used to evaluate the reconstructed image quality. The results demonstrated that the proposed method could effectively reduce noise, suppress artifacts, and reconstruct high-quality image from incomplete projection data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E.J. Hall, D.J. Brenner, Cancer risks from diagnostic radiology. Br. J. Radiol. 81(965), 362–378 (2008). https://doi.org/10.1259/bjr/01948454

    Article  Google Scholar 

  2. A. Berrington, M. Mahesh, K.P. Kim et al., Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 169(20), 2071–2077 (2009). https://doi.org/10.1001/archinternmed.2009.440

    Article  Google Scholar 

  3. J.D. Cameron, One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt. 31(8), 1146–1152 (1992). https://doi.org/10.1364/AO.31.001146

    Article  Google Scholar 

  4. R. Gordon, R. Bender, G. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970). https://doi.org/10.1016/0022-5193(70)90109-8

    Article  Google Scholar 

  5. H. Andersen, A. Kak, Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984). https://doi.org/10.1177/016173468400600107

    Article  Google Scholar 

  6. D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  7. E.Y. Sidky, X.C. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total variation minimization. Phys. Med. Biol. 53, 4777–4807 (2008). https://doi.org/10.1088/0031-9155/53/17/021

    Article  Google Scholar 

  8. J. Bian, J. Siewerdsen et al., Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT. Phys. Med. Biol. 55(65), 75–99 (2010). https://doi.org/10.1088/0031-9155/55/22/001

    Google Scholar 

  9. H. Yu, G. Wang, A soft-threshold filtering approach for reconstruction from a limited number of projections. Phys. Phys. Med. Biol. 55(13), 3905–3916 (2010). https://doi.org/10.1088/0031-9155/55/13/022

    Article  Google Scholar 

  10. Q. Xu, X. Mou et al., Statistical interior tomography. IEEE Trans. Med. Imaging 30(5), 1116–1128 (2011). https://doi.org/10.1109/TMI.2011.2106161

    Article  Google Scholar 

  11. Y. Liu, J. Ma, Y. Fan, Z. Liang, Adaptive-weighted total variation minimization for sparse data toward low-dose X-ray computed tomography image reconstruction. Phys. Med. Biol. 57(23), 7923–7956 (2012). https://doi.org/10.1088/0031-9155/57/23/7923

    Article  Google Scholar 

  12. Q. Xu, H. Yu, X. Mou, et al., Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 31(9), 1682–1697 (2012). https://doi.org/10.1109/TMI.2012.2195669

    Article  Google Scholar 

  13. H. Li, X. Chen, Y. Wang, et al., Sparse CT reconstruction based on multi-direction anisotropic total variation (MDATV). BioMed. Eng. Online 13, 92 (2014). https://doi.org/10.1186/1475-925X-13-92

    Article  Google Scholar 

  14. T. Goldstein, S. Osher, The split Bregman method for L1-regularized problems. SIAM J Imaging Sci. 2, 323–343 (2009). https://doi.org/10.1137/080725891

    Article  MathSciNet  MATH  Google Scholar 

  15. M.Y. Chen, D.L. Mi, P. He, et al., A CT reconstruction algorithm based on L1/2 regularization. Comput. Math. Methods Med. (2014). https://doi.org/10.1155/2014/862910

    MATH  Google Scholar 

  16. L.Z. Deng, P. Feng, M.Y. Chen, et al., A CT reconstruction algorithm based on non-aliasing contourlet transform and compressive sensing. Comput. Math. Methods Med. (2014). https://doi.org/10.1155/2014/753615

    MATH  Google Scholar 

  17. L.Z. Deng, D.L. Mi, P. He, et al., A CT reconstruction approach from sparse projection with adaptive-weighted diagonal total-variation in biomedical application. Bio-Med. Mater. Eng. 26, 1685–1693 (2015). https://doi.org/10.3233/BME-151468

    Article  Google Scholar 

  18. M.Y. Chen, Y. Ren, P. Feng, et al., Computed tomography image reconstruction from few-views data by multi-directional total variation. J. Med. Imaging Health Inf. 5, 309–316 (2015). https://doi.org/10.1166/jmihi.2015.1392

    Article  Google Scholar 

  19. L.Z. Deng, P. Feng, M.Y. Chen, et al., An improved total variation minimization method using prior images and split-Bregman method in CT reconstruction. Biomed. Res. Int. (2016). https://doi.org/10.1155/2016/3094698

    Google Scholar 

  20. H. Zhou, P. Wang, A simpler explicit iterative algorithm for a class of variational in equalities in Hilbert spaces. J. Optim. Theory Appl. 161, 716–727 (2014). https://doi.org/10.1007/s10957-013-0470-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Yu, F. Noo, F. Dennerlein et al., Simulation tools for two dimensional experiments in X-ray computed tomography using the FORBILD head phantom. Phys. Med. Biol. 57, 237–252 (2012). https://doi.org/10.1088/0031-9155/57/13/N237

    Article  Google Scholar 

  22. W. Zhou, C. Alan, R. Hamid, P. Eero, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  23. M.Y. Chen, Y. Xi, W.X. Cong, et al., X-ray CT geometrical calibration via locally linear embedding. J. X-ray Sci. Technol. 24, 241–256 (2016). https://doi.org/10.3233/XST-160548

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng He or Peng Feng.

Additional information

This work was supported in part by the National Natural Science Foundation of China (No. 61401049), the Chongqing Foundation and Frontier Research Project (Nos. cstc2016jcyjA0473, cstc2013jcyjA0763), the Graduate Scientific Research and Innovation Foundation of Chongqing, China (No. CYB16044), the Strategic Industry Key Generic Technology Innovation Project of Chongqing (No. cstc2015zdcy-ztzxX0002), China Scholarship Council, and the Fundamental Research Funds for the Central Universities Nos. CDJZR14125501, 106112016CDJXY120003, 10611CDJXZ238826.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LZ., He, P., Jiang, SH. et al. Hybrid reconstruction algorithm for computed tomography based on diagonal total variation. NUCL SCI TECH 29, 45 (2018). https://doi.org/10.1007/s41365-018-0376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0376-2

Keywords

Navigation