Skip to main content
Log in

Establishment of a calibration curve for an isocentric cobalt unit using Monte Carlo simulation

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Measurement of dose distribution in patients during radiotherapy is impossible. The Monte Carlo simulation is an alternative method for dose calculations. In routine radiotherapy, the source-to-surface distance (SSD) method is not practical for an isocentric unit because it requires numerous values of tissue–air ratios and inverse square law. Therefore, this method is time consuming. In this paper, the curves of relative depth doses were obtained for three different SSDs using the MCNP4C Monte Carlo simulation and approximated with a single curve called calibration curve. This curve was compared to the curve obtained by published data, differing in approximately 5% in the worst case. It was also observed that the obtained results were more accurate for distances between −5 and 10 cm from source-to-axis distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F.M. Khan, J.P. Gibbons, Khan’s The Physics of Radiation Therapy (Lippincott Williams & Wilkins, Philadelphia, 2014)

    Google Scholar 

  2. M.J. Tahmasebi Birjani, S.M. Karbalaee, Calculation of analytical expressions for measured percentage depth dose data in megavoltage photon therapy. IRCMJ 11, 140–144 (2009)

    Google Scholar 

  3. M.M.H. Baba, M. Mohib-ul-Haq, M.A.A. Khan, Dosimetric consistency of Co-60 teletherapy unit-a 10 years study. Int. J. Health Sci. 7, 15–21 (2013). doi:10.12816/0006016

    Article  Google Scholar 

  4. G. Audi, O. Bersillon, J. Blachot et al., The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 729, 3–128 (2003). doi:10.1016/S0375-9474(97)00482-X

    Article  Google Scholar 

  5. National Research Council (US), Committee on Radiation Source Use and Replacement (Nuclear and Radiation Studies Board, Washington, DC, 2008)

    Google Scholar 

  6. E.B. Podgorsak, Review of Radiation Oncology Physics: A Handbook for Teachers and Students (International Atomic Energy Agency, Vienna, 2003)

    Google Scholar 

  7. H.E. Johns, J.R. Cunningham, The Physics of Radiology (Charles C. Thomas, Springfield, 1983)

    Google Scholar 

  8. J. Van de Geijn, The computation of two and three dimensional dose distributions in Co-60 teletherapy. Br. J. Radiol. 38, 369–377 (1965). doi:10.1259/0007-1285-38-449-369

    Article  Google Scholar 

  9. T. Sterling, H. Perry, J. Weinkam, Automation of radiation treatment planning—VI. A general field equation to calculate percent depth dose in the irradiated volume of a cobalt 60 beam. Br. J. Radiol. 40, 463–474 (1967). doi:10.1259/0007-1285-40-474-463

    Article  Google Scholar 

  10. C. Kanellitsas, J.V. Fayos, Analytical approach for depth dose calculations (60Co beams with fixed source-target distance). Radiology 115(1), 181–185 (1975). doi:10.1148/115.1.181

    Article  Google Scholar 

  11. I.A. Tsalafoutas, S. Xenofos, A. Papalexopoulous et al., Dose calculations for asymmetric fields defined by independent collimators using symmetric field data. Br. J. Radiol. 73, 403–409 (2000). doi:10.1259/bjr.73.868.10844866

    Article  Google Scholar 

  12. M. Ghorbani, M.J. Tahmasebi Birjani, A. Mehdizade, New formula for calculation of cobalt 60 percentage depth dose. IJMP 2, 53–60 (2005)

    Google Scholar 

  13. K. Han, D. Ballon, C. Chui et al., Monte Carlo simulation of a cobalt-60 beam. Med. Phys. 14, 414–419 (1987). doi:10.1118/1.596120

    Article  Google Scholar 

  14. G.M. Mora, A. Maio, D.W.O. Rogers, Monte Carlo simulation of a typical 60Co therapy source. Med. Phys. 26, 2494–2502 (1999). doi:10.1118/1.598770

    Article  Google Scholar 

  15. B.T. Sichani, M. Sohrabpour, Monte Carlo dose calculations for radiotherapy machines: Theratron 780-C teletherapy case study. Phys. Med. Biol. 49, 807 (2004). doi:10.1088/0031-9155/49/5/011

    Article  Google Scholar 

  16. R. Miro, J. Soler, S. Gallardo et al., MCNP simulation of a Theratron 780 radiotherapy unit. Radiat. Prot. Dosim. 116, 65 (2005). doi:10.1093/rpd/nci125

    Article  Google Scholar 

  17. W.S. Jae, H. Seung-Woo, L. Chung-Il et al., Application of a GEANT4 Simulation to a 60Co Therapy Unit. J. Korean Phys. Soc. 59(1), 12–19 (2011). doi:10.3938/jkps.59.12

    Article  Google Scholar 

  18. A.L. McKenzie, Cobalt-60 gamma-ray beams. Br. J. Radiol. 25, 46–61 (1996)

    Google Scholar 

  19. J.K. Shultis, R.E. Faw, An MCNP primer. (Kansas State University, Manhattan), http://www.bl831.als.lbl.gov/~mcfuser/publications/MCNP/MCNP_primer.pdf.2010

  20. International Commission on Radiation Units and measurements (ICRU), Prescribing, Recording and Reporting Photon Beam Therapy (International Commission on Radiation Units and measurements, Bethesda, MD, 1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Milad Vahabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahabi, S.M., Shamsaie-Zafarghandi, M. Establishment of a calibration curve for an isocentric cobalt unit using Monte Carlo simulation. NUCL SCI TECH 28, 125 (2017). https://doi.org/10.1007/s41365-017-0275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0275-y

Keywords

Navigation