Skip to main content
Log in

Spin polarization and production rate studies of surface muons in a novel solenoid capture system based on CSNS

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A novel surface muon capture system with a large acceptance was proposed based on the China spallation neutron source (CSNS). This system was designed using a superconducting solenoid where a long graphite target was put inside it. Firstly, the spin polarization evolution was studied in a constant uniform magnetic field. As the magnetic field can interact with the spin of the surface muon, both the spin polarization and production rate of the surface muons collected by the new capture system were calculated by the G4beamline. Simulation results showed that the surface muons could still keep a high spin polarization (>90%) with different magnetic fields (0–10 T), and the larger magnetic field is, the more surface muons can be captured. Finally, the proton phase space, Courant–Snyder parameters, and intensities of surface muons of different beam fractions were given with magnetic fields of 0 and 5 T. The solenoid capture system can focus proton and surface muon beams and collect \(\pi ^{\pm }\) and \(\mu ^{\pm }\) particles. It can also provide an intense energetic positron source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Yaouanc, P.D. De Réotier, Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford University Press, Oxford, 2011)

    Google Scholar 

  2. K.M. Kojima, Advantage of musr over to other experimental techniques- Expectations to the unified facility. KEK PROCEEDINGS. High Energy Accelerator Organization 2001, 142–149 (1999)

    Google Scholar 

  3. K. Nagamine, Introductory Muon Science (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  4. S.Q. Yang, M.A. Green, G. Barr et al., The mechanical and thermal design for the mice focusing solenoid magnet system. IEEE Trans. Appl. Supercond. 15(2), 1259–1262 (2005). doi:10.1109/TASC.2005.849556

    Article  Google Scholar 

  5. M. Yoshida, Y. Yang, T. Ogitsu et al., Status of superconducting solenoid system for comet phase-I experiment at J-PARC. IEEE Trans. Appl. Supercond. 25(3), 1–4 (2015). doi:10.1109/TASC.2014.2382534

    Google Scholar 

  6. S. Mihara, MEG experiment at the paul scherrer institute. Nucl. Phys. A 844(1), 150c–154c (2010). doi:10.1016/j.nuclphysa.2010.05.026

    Article  Google Scholar 

  7. H. Miyadera, K. Nagamine, K. Shimomura et al., Design, construction and performance of dai omega, a large solid-angle axial-focusing superconducting surface-muon channel. Nucl. Instrum. Methods A 569(3), 713–726 (2006). doi:10.1016/j.nima.2006.09.087

    Article  Google Scholar 

  8. T. Prokscha, E. Morenzoni, K. Deiters et al., The new \(\mu \)e4 beam at psi: a hybrid-type large acceptance channel for the generation of a high-intensity surface-muon beam. Nucl. Instrum. Methods A 595, 317–331 (2008). doi:10.1016/j.nima.2008.07.081

    Article  Google Scholar 

  9. M. Yoshida, M. Fukuda, K. Hatanaka et al., Superconducting solenoid magnets for the music project. IEEE Trans. Appl. Supercond. 21(3), 1752–1755 (2011). doi:10.1109/TASC.2010.2088360

    Article  Google Scholar 

  10. Y. Hino, K. Hatanaka, M. Lancaster et al., A new intense dc muon beam from a pion capture solenoid, MUSIC, in 36th International Conference on High Energy Physics (2012)

  11. S. Cook, R. D’Arcy, M. Fukuda et al., First measurements of muon production rate using a novel pion capture system at MUSIC. J. Phys. Conf. Ser. 408, 012079 (2013). doi:10.1088/1742-6596/408/1/012079

    Article  Google Scholar 

  12. R. Xiao, Y.F. Liu, W.Z. Xu et al., A new muon-pion collection and transport system design using superconducting solenoids based on CSNS. Chin. Phys. C 40(5), 057004 (2016). doi:10.1088/1674-1137

    Article  Google Scholar 

  13. R. Xiao, Y.F. Liu, W.Z. Xu et al., Study on a new large solid angle capture system for surface muon using superconducting solenoids. Nucl. Phys. Rev. 31(4), 468–474 (2014)

    Google Scholar 

  14. J. Wei, S.N. Fu, J.Y. Tang et al., China spallation neutron source-an overview of application prospects. Chin. Phys. C 33(11), 1033 (2009). doi:10.1088/1674-1137

    Article  Google Scholar 

  15. J. Wei, H.S. Chen, Y.W. Chen et al., China spallation neutron source: design, R&D, and outlook. Nucl. Instrum. Methods A 600(1), 10–13 (2009). doi:10.1016/j.nima.2008.11.017

    Article  MathSciNet  Google Scholar 

  16. S.N. Fu, H.S. Chen, Y.W. Chen et al., Status and challenges of the china spallation neutron source. IPAC 11, 889 (2011)

    Google Scholar 

  17. http://www.muonsinternal.com/muons3/G4beamline

  18. S. Agostinelli, J. Allison, K. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods A 506(3), 250–303 (2003). doi:10.12691/bb-2-4-3

    Article  Google Scholar 

  19. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006). doi:10.1109/TNS.2006.869826

    Article  Google Scholar 

  20. T.J. Roberts, G4beamline-a” swiss army knife” for geant4, optimized for simulating beamline (2013)

  21. T.J. Roberts et al., G4beamline code development (2012)

  22. P.D. de Reotier, A. Yaouanc, Muon spin rotation and relaxation in magnetic materials. J. Phys. Condens. Matter 9(43), 9113 (1997). doi:10.1088/0953-8984/9/43/002

    Article  Google Scholar 

  23. C. Yoshikawa, C. Ankenbrandt, R.P. Johnson et al., Complete muon cooling channel design and simulations. IPAC13, TUPFI060 (2013)

  24. M. Chung, M.G. Collura, G. Flanagan et al., Pressurized h 2 rf cavities in ionizing beams and magnetic fields. Phys. Rev. Lett. 111(18), 184802 (2013). doi:10.1103/PhysRevLett.111.184802

    Article  Google Scholar 

  25. A. Ribon, J. Apostolakis, A. Dotti et al., Transition between hadronic models in geant4, in Nuclear Science Symposium Conference Record (NSS/MIC) (IEEE, 2009), pp. 526–529. doi:10.1109/NSSMIC.2009.5401645

  26. J.Y. Tang, G.H. Wei, C. Zhang et al., Beam preparation for the injection into CSNS RCS. in Proc. of HB2008 (2008)

  27. H.T. Jing, C. Meng, J.Y. Tang et al., Production target and muon collection studies for an experimental muon source at CSNS. Nucl. Instrum. Methods A 684, 109–116 (2012). doi:10.1016/j.nima.2012.05.045

    Article  Google Scholar 

  28. A. Bungau, R. Cywinski, C. Bungau et al., Simulations of surface muon production in graphite targets. Phys. Rev. ST-AB 16(1), 014701 (2013). doi:10.1103/PhysRevSTAB.16.014701

    Google Scholar 

  29. R. Abela, C. Baines, X. Donath et al., The \(\mu \)SR facilities at PSI. Hyperfine Interact. 87(1), 1105–1110 (1994). doi:10.1007/BF02068511

    Article  Google Scholar 

  30. Y. Ikeda, J-parc status update. Nucl. Instrum. Methods A 600(1), 1–4 (2009). doi:10.1016/j.nima.2008.11.019

    Article  Google Scholar 

  31. M. Chung, H. Qin, R.C. Davidson, Twiss parameters and beam matrix formulation of generalized courant-snyder theory for coupled transverse beam dynamics. Phys. Plasma 17(8), 084502, 2010 (2013). doi:10.1063/1.3474930

    Google Scholar 

  32. Z.Q. Tan, W.Z. Xu, Y.F. Liu et al., A novel source of mev positron bunches driven by energetic protons for PAS application. Nucl. Instrum. Methods A 763, 184–189 (2014). doi:10.1016/j.nima.2014.05.054

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Thomas Prokscha at Paul Scherrer Institute (Switzerland), Jing-Yu Tang at the Institute of High Energy Physics, and Yasuhiro Miyake at J-PARC (Japan) for their useful discussions about the muon spin polarization calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Jiao Ye.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11527811).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Liu, YF., Ni, XJ. et al. Spin polarization and production rate studies of surface muons in a novel solenoid capture system based on CSNS. NUCL SCI TECH 28, 109 (2017). https://doi.org/10.1007/s41365-017-0261-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0261-4

Keywords

Navigation