Skip to main content
Log in

Simulation of radiation damages in molybdenum by combining molecular dynamics and OKMC

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this paper, radiation defects in bcc molybdenum with the primary knock-on atom (PKA) energies of 2–40 keV are simulated by the molecular dynamics. The binding energy of single point defect-to-defect clusters increases with the cluster size. The stability and mobility of point defects and defect clusters are analyzed. The interstitial-type clusters are found to be easily migrating along the <111> direction with low barriers (0.01–0.10 eV). Then, the object kinetic Monte Carlo is used to gain insight into the long-term defect evolution in the cascade. The simulation results indicate that Stage I almost occurs at annealing temperature of 100 K, which corresponds to the correlated recombination resulting from the motion of small interstitial clusters (n ≤ 2). The formation of substage partly as result of the small vacancy clusters motion. At about 460 K, the Stage II starts because of uncorrelated recombination due to an emitting mechanism of larger clusters. Size distribution of the clusters at the cascade quenching stage is positively correlated with the PKA energies, affecting notably the subsequent annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems. J. Nucl. Mater. 385, 217–222 (2009). doi:10.1016/j.jnucmat.2008.11.026

    Article  Google Scholar 

  2. C. Jun, B.X. Xiao, C. Kun et al., Analysis on reactivity initiated transient from control rod failure events of a molten salt reactor. Nucl. Sci. Tech. 25, 030602 (2014). doi:10.13538/j.1001-8042/nst.25.030602

    Google Scholar 

  3. A.A.F. Tavassoli, Present limits and improvements of structural materials for fusion reactors. J. Nucl. Mater. 302, 73–88 (2002). doi:10.1016/S0022-3115(02)00794-8

    Article  Google Scholar 

  4. P. Feng, S.Y. Liu, B. Wei et al., Simulation and experimental study of a random neutron analyzing system with 252Cf neutron source. Nucl. Sci. Tech. 22(1), 39–46 (2011). doi:10.13538/j.1001-8042/nst.22.39-46

    Google Scholar 

  5. T. Jun, J.X. Li, L.L. Tong et al., Core cooling in pressurized-water reactor during water injection. Nucl. Sci. Tech. 22(1), 60–64 (2011). doi:10.13538/j.1001-8042/nst.22.60-64

    Google Scholar 

  6. Q. Han, Q.S. Wu, J.W. Chen et al., Analysis of fixation method of fuel assembly for lead-alloy cooled reactor. Nucl. Sci. Technol. 26(5), 50601 (2015). doi:10.13538/j.1001-8042/nst.26.050601

    Google Scholar 

  7. G.D. Temmerman, M.J. Baldwin, R.P. Doerner et al., Beryllium deposition on international thermonuclear experimental reactor first mirrors: layer morphology and influence on mirror reflectivity. J. Appl. Phys. 102, 083302 (2007). doi:10.1063/1.2798389

    Article  Google Scholar 

  8. T. Sugie, S. Kasai, M. Taniguchi et al., Irradiation test of Mo- and W-mirrors for ITER by low energy deuterium ions. J. Nucl. Mater. 329–333, 1481–1485 (2004). doi:10.1016/j.jnucmat.2004.04.248

    Article  Google Scholar 

  9. B.V. Cockeram, J.L. Hollenbeck, L.L. Snead, The change in tensile properties of wrought LCAC molybdenum irradiated with neutrons. J. Nucl. Mater. 324, 77–89 (2004). doi:10.1016/j.jnucmat.2003.05.001

    Article  Google Scholar 

  10. M.M. Li, M. Eldrup, T.S. Byun et al., Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum. J. Nucl. Mater. 376, 11–28 (2008). doi:10.1016/j.jnucmat.2007.12.001

    Article  Google Scholar 

  11. D. Yun, M.A. Kirk, P.M. Baldo et al., In situ TEM investigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal. J. Nucl. Mater. 437, 240–249 (2013). doi:10.1016/j.jnucmat.2013.01.305

    Article  Google Scholar 

  12. D.H. Xu, B.D. Wirth, M.M. Li et al., Defect micro-structural evolution in ion irradiated metallic nano-foils: Kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments. Appl. Phys. Lett. 101, 101905 (2012). doi:10.1063/1.4748980

    Article  Google Scholar 

  13. M. Eldrup, M.M. Li, L.L. Snead et al., Characterization of defect accumulation in neutron-irradiated Mo by positron annihilation spectroscopy. Nucl. Instrum. Methods B 266, 3602–3606 (2008). doi:10.1016/j.nimb.2008.06.018

    Article  Google Scholar 

  14. A.Y. Kuksin, G.E. Norman, V.V. Stegailov et al., Radiation-induced damage and evolution of defects in Mo. Phys. Rev. B 84, 104109 (2011). doi:10.1103/PhysRevB.84.104109

    Article  Google Scholar 

  15. S. Han, L.A. Zepeda-Ruiz, G.J. Ackland et al., Self-interstitials in V and Mo. Phys. Rev. B 66, 220101 (2002). doi:10.1103/PhysRevB.66.220101

    Article  Google Scholar 

  16. Young, F.W and Jr., What do we really know about the atomic-scale structures of nanophase materials. J. Nucl. Mater. 310, 69–70 (1978). doi:10.1016/0022-3697(94)90127-9

  17. D.N. Manh, A.P. Horsfield, S.L. Dudarev, Self-interstitial atom defects in bcc transition metals: Group-specific trends. Phys. Rev. B 73, 020101 (2006). doi:10.1103/PhysRevB.73.020101

    Article  Google Scholar 

  18. A.F. Calder, D.J. Bacon, A.V. Barashev et al., On the origin of large interstitial clusters in displacement cascades. Philos. Mag 863, 90 (2010). doi:10.1080/14786430903117141

    Google Scholar 

  19. A.P. Selby, D.H. Xu, N. Juslin et al., Primary defect production by high energy displacement cascades in molybdenum. J. Nucl. Mater. 437, 19–23 (2013). doi:10.1016/j.jnucmat.2013.01.332

    Article  Google Scholar 

  20. F. Gao, D.J. Bacon, A.V. Barashev et al., Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods. Mat. Res. Soc. Symp. Proc 540, 703–708 (1999). doi:10.1016/j.jnucmat.2010.05.019

    Article  Google Scholar 

  21. T. Suzudo, S.I. Golubov, R.E. Stoller et al., Annealing simulation of cascade damage in α-Fe—Damage energy and temperature dependence analyses. Proc. Nucl. Sci. Tech. 2, 56–63 (2011). doi:10.1016/j.jnucmat.2012.01.014

    Article  Google Scholar 

  22. H.L. Heinisch, B.N. Singh, Stochastic annealing simulation of intracascade defect interactions. J. Nucl. Mater. 251, 77–85 (1997). doi:10.1016/S0022-3115(97)00219-5

    Article  Google Scholar 

  23. A. Almazouzi, M.J. Caturla, T.D. Rubia et al., Annealing kinetics of single displacement cascades in Ni: an atomic scale computer simulation. Mat. Res. Soc. Symp. Proc 540, 685–690 (1999). doi:10.1557/PROC-540-685

    Article  Google Scholar 

  24. Z.W. Rong, F. Gao, W.J. Weber, Monte Carlo simulations of defect recovery within a 10 keV collision cascade in 3C–SiC. J. Appl. Phys 102, 103508 (2007). doi:10.1063/1.2812701

    Article  Google Scholar 

  25. H.L. Heinisch, B.N. Singh, Stochastic annealing simulation of differential defect production in high energy cascades. J. Nucl. Mater. 232, 206–213 (1996). doi:10.1016/S0022-3115(96)00434-5

    Article  Google Scholar 

  26. K. Wang, H.Q. Deng, W.Y. Hu et al., An atomic study on the shock-induced plasticity and phase transition for iron-based single crystals. Int. J. Plast 59, 180–198 (2014). doi:10.1016/j.ijplas.2014.03.007

    Article  Google Scholar 

  27. N.W. Hu, S.F. Xiao, H.Q. Deng et al., Molecular dynamics simulation of displacement cascades in Ni–Mo alloy. Nucl. Sci. Tech. 26, 060603 (2015). doi:10.13538/j.1001-8042/nst.26.060603

    Google Scholar 

  28. P. Maragakis, S.S.A. Andreev, Y. Brumer et al., Adaptive nudged elastic band approach for transition state calculation. J. Chem. Phys 117, 4651 (2002). doi:10.1063/1.1495401

    Article  Google Scholar 

  29. J.W. Chu, B.L. Trout, B.R. Brooks, A super-linear minimization scheme for the nudged elastic band method. J. Chem. Phys 119, 12708 (2003). doi:10.1063/1.1627754

    Article  Google Scholar 

  30. G. Henkelman, B.P. Uberuaga, H. Jo´nsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys 113, 9901 (2000). doi:10.1063/1.1329672

    Article  Google Scholar 

  31. C.S. Becquart, C. Domain, An object kinetic Monte Carlo Simulation of the dynamics of helium and point defects in tungsten. J. Nucl. Mater. 385, 223–227 (2009). doi:10.1016/j.jnucmat.2008.11.027

    Article  Google Scholar 

  32. G.J. Galloway, G.J. Ackland, Molecular dynamics and object kinetic Monte Carlo study of radiation-induced motion of voids and He bubbles in bcc iron. Phys. Rev. B 87, 104106 (2013). doi:10.1103/PhysRevB.87.104106

    Article  Google Scholar 

  33. R.E. Stoller, S.I. Golubov, C. Domain et al., Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J. Nucl. Mater. 382, 77–90 (2008). doi:10.1016/j.jnucmat.2008.08.047

    Article  Google Scholar 

  34. J. Yang, Y. Yang, Y. Li et al., Monte-Carlo simulation of cement neutron field distribution characteristics in PGNAA. Nucl. Sci. Tech. 6, 006 (2012). doi:10.13538/j.1001-8042/nst.23.337-343

    Google Scholar 

  35. L. Gámez, B. Gámez, M.J. Caturla et al., Object Kinetic Monte Carlo calculations of irradiated Fe–Cr dilute alloys: the effect of the interaction radius between substitutional Cr and self-interstitial Fe. Nucl. Instrum. Methods B 269, 1684–1688 (2011). doi:10.1016/j.nimb.2010.12.044

    Article  Google Scholar 

  36. C. Domain, C.S. Becquart, L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J. Nucl. Mater. 335, 121–145 (2004). doi:10.1016/j.jnucmat.2004.07.037

    Article  Google Scholar 

  37. T. Suzudo, S.I. Golubov, R.E. Stoller et al., Kinetic Monte Carlo annealing simulation of cascade damage in α-Fe. Pro. Nuc. Sci. Tec 2, 56–63 (2011). doi:10.15669/pnst.2.56

    Article  Google Scholar 

  38. H.X. Xu, Y.N. Osetsky, R.E. Stoller, Cascade annealing simulations of bcc iron using object kinetic Monte Carlo. J. Nucl. Mater. 423, 102–109 (2012). doi:10.1016/j.jnucmat.2012.01.020

    Article  Google Scholar 

  39. C.C. Fu, J.D. Torre, F. Willaime et al., Multiscale modelling of defect kinetics in irradiated iron. Nat. Mat. 4, 68–74 (2005). doi:10.1038/nmat1286

    Article  Google Scholar 

  40. D.J. Bacon, F. Gao, Y.N. Osetsky, Computer simulation of displacement cascades and the defects they generate in metals. Nucl. Instrum. Methods B 153, 87–98 (1999). doi:10.1016/S0168-583X(99)00041-5

    Article  Google Scholar 

  41. R.A. Johnson, Interstitials and vacancies in α iron. Phys. Rev. 134, 5 (1964). doi:10.1103/PhysRev.134.A1329

    Article  Google Scholar 

  42. G.J. Galloway, G.J. Ackland, Molecular dynamics and object kinetic Monte Carlo study of radiation-induced motion of voids and He bubbles in bcc iron. Phys. Rev. B 87, 104106 (2013). doi:10.1103/PhysRevB.87.104106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Yu Hu.

Additional information

This work was supported by the Shanghai Municipal Science and Technology Commission (No. 13ZR1448000) and the National Natural Science Foundation of China (No. 11505266).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, GY., Hu, NW., Deng, HQ. et al. Simulation of radiation damages in molybdenum by combining molecular dynamics and OKMC. NUCL SCI TECH 28, 3 (2017). https://doi.org/10.1007/s41365-016-0164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0164-9

Keywords

Navigation