Skip to main content
Log in

Density fluctuations in baryon-rich quark matter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

At finite baryon chemical potential, the density of a quark matter develops large fluctuations when it undergoes a first-order phase transition. Based on the transport equation derived from the Nambu–Jona-Lasinio (NJL) model, we have studied the density fluctuations in a baryon-rich quark matter that is confined in a finite volume. Allowing the expansion of the quark matter using initial conditions from either a blast wave model or a multiphase transport (AMPT) model, we have further studied the survivability of the density fluctuations as the density and temperature of the quark matter decrease. Possible experimental signatures of the density fluctuations are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.K. Nayak, (STAR Collaboration), Study of the fluctuations of net-charge and net-protons using higher order moments. Nucl. Phys. A 830, 555c–558c (2009). doi:10.1016/j.nuclphysa.2009.09.046

    Article  Google Scholar 

  2. M.M. Aggarwal et al., (STAR), Higher moments of net proton multiplicity distributions at RHIC. Phys. Rev. Lett. 105, 022302 (2010). doi:10.1103/PhysRevLett.105.022302

    Article  Google Scholar 

  3. D. McDonald, Overview of results from phase I of the beam energy scan program at RHIC. EPJ Web Conf. 95, 01009 (2015). doi:10.1051/epjconf/20159501009

    Article  Google Scholar 

  4. K. Fukushima, Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 77, 114028 (2008). doi:10.1103/PhysRevD.77.114028

    Article  Google Scholar 

  5. F. Li, C.M. Ko, Spinodal instabilities of baryon-rich quark-gluon plasma in the Polyakov–Nambu–Jona-Lasinio model. Phys. Rev. C 93, 035205 (2016). doi:10.1103/PhysRevC.93.035205

    Article  Google Scholar 

  6. F. Li, C.M. Ko, arXiv:1606.05012 [nucl-th]

  7. N.M. Bratovic, T. Hatsuda, W. Weise, Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram. Phys. Lett. B 719, 131–135 (2013). doi:10.1016/j.physletb.2013.01.003

    Article  Google Scholar 

  8. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432 (1976). doi:10.1103/PhysRevD.14.3432

    Article  Google Scholar 

  9. M. Buballa, NJL-model analysis of dense quark matter. Phys. Rep. 407, 205–376 (2005). doi:10.1016/j.physrep.2004.11.004

    Article  Google Scholar 

  10. A. Masayuki, Y. Koichi, Chiral restoration at finite density and temperature. Nucl. Phys. A 504, 668–684 (1989). doi:10.1016/0375-9474(89)90002-X

    Article  Google Scholar 

  11. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 122, 345 (1961). doi:10.1103/PhysRev.122.345

    Article  Google Scholar 

  12. J. Xu, T. Song, C.M. Ko, F. Li, Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 112, 012301 (2014). doi:10.1103/PhysRevLett.112.012301

    Article  Google Scholar 

  13. S.P. Klevansky, A. Ogura, J. Hufner, Ann. Phys. 261, 37 (1997)

    Article  Google Scholar 

  14. C.M. Ko, T. Song, F. Li, V. Greco, S. Plumari, Partonic mean-field effects on matter and antimatter elliptic flows. Nucl. Phys. A 928, 234–246 (2014). doi:10.1016/j.nuclphysa.2014.05.016

    Article  Google Scholar 

  15. C.Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree–Fock approximation from a classical point of view. Phys. Rev. C 25, 1460 (1982). doi:10.1103/PhysRevC.25.1460

    Article  Google Scholar 

  16. G.F. Bertsch, S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rep. 160, 189–233 (1988). doi:10.1016/0370-1573(88)90170-6

    Article  Google Scholar 

  17. J. Steiheimer, J. Randrup, Spinodal density enhancements in simulations of relativistic nuclear collisions. Phys. Rev. C 87, 054903 (2013). doi:10.1103/PhysRevC.87.054903

    Article  Google Scholar 

  18. M.A. Stephanov, Non-Gaussian fluctuations near the QCD critical point. Phys. Rev. Lett. 102, 032301 (2009). doi:10.1103/PhysRevLett.102.032301

    Article  Google Scholar 

  19. Z.W. Lin, C.M. Ko, B.A. Li et al., Multiphase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi:10.1103/PhysRevC.72.064901

    Article  Google Scholar 

  20. C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, J. Phys. Conf. Ser. 509, 012065 (2014)

    Article  Google Scholar 

  21. J. Steiheimer, J. Randrup, V. Koch, Non-equilibrium phase transition in relativistic nuclear collisions: importance of the equation of state. Phys. Rev. C 89, 034901 (2014). doi:10.1103/PhysRevC.89.034901

    Article  Google Scholar 

  22. B.H. Alver, C. Gombeaud, M. Luzum, J.Y. Ollitrault, Triangular flow in hydrodynamics and transport theory. Phys. Rev. C 82, 034913 (2010). doi:10.1103/PhysRevC.82.034913

    Article  Google Scholar 

  23. S. Wang, Y.Z. Jiang, Y.M. Liu et al., Measurement of collective flow in heavy-ion collisions using particle-pair correlations. Phys. Rev. C 44, 1091 (1991). doi:10.1103/PhysRevC.44.1091

    Article  Google Scholar 

  24. N. Borghini, P.M. Dinh, J.Y. Ollitrault, Flow analysis from multiparticle azimuthal correlations. Phys. Rev. C 64, 054901 (2001). doi:10.1103/PhysRevC.64.054901

    Article  Google Scholar 

  25. L. Xiong, Z.G. Wu, C.M. Ko, J.Q. Wu, Dielectron production from nucleus-nucleus collisions. Nucl. Phys. A 512, 772–786 (1990). doi:10.1016/0375-9474(90)90234-D

    Article  Google Scholar 

  26. T. Galatyuk, P.M. Hohler, R. Rapp, F. Seck, J. Stroth, Thermal dileptons from coarse-grained transport as fireball probes at SIS energies. Eur. Phys. J. A 52, 131 (2016). doi:10.1140/epja/i2016-16131-1

    Article  Google Scholar 

  27. M. Gyulassy, X.N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high energy hadronic and nuclear collisions. Comput. Phys. Commun. 83, 307–331 (1994). doi:10.1016/0010-4655(94)90057-4

    Article  Google Scholar 

  28. T. Sjöstrand, High-energy-physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74–89 (1994). doi:10.1016/0010-4655(94)90132-5

    Article  Google Scholar 

  29. B. Zhang, ZPC 1.0.1: a parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193–206 (1998). doi:10.1016/S0010-4655(98)00010-1

    Article  MATH  Google Scholar 

  30. B.A. Li, C.M. Ko, Formation of superdense hadronic matter in high energy heavy-ion collisions. Phys. Rev. C 52, 2037 (1995). doi:10.1103/PhysRevC.52.2037

    Article  Google Scholar 

  31. B.A. Li, A.T. Sustich, B. Zhang, C.M. Ko, Studies of superdense hadronic matter in a relativistic transport model. Int. J. Mod. Phys. E 10, 267 (2001). doi:10.1142/S0218301301000575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che Ming Ko.

Additional information

This work was supported in part by the US Department of Energy under Contract No. DE-SC0015266 and the Welch Foundation under Grant No. A-1358.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, C.M., Li, F. Density fluctuations in baryon-rich quark matter. NUCL SCI TECH 27, 140 (2016). https://doi.org/10.1007/s41365-016-0141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-016-0141-3

Keywords

Navigation