Skip to main content
Log in

Toxicity effects of several medicinal plants essential oils on Angoumois grain moth (Sitotroga cerealella) female adults

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The use of plant essential oils as eco-friendly and bio-rational insecticides  have emerged as a promising alternative to hazardous fumigant pesticides for controlling stored product insect pests. This study investigated the vapor toxicity of essential oils obtained from Thymus vulgaris, Satureja hortensis, Pelargonium roseum, and Syzygium aromaticum against Sitotroga cerealella (Olivier) female adults. Gas chromatography–mass spectrometry analysis revealed Thymol (56.36%), Citronellol (39.7%), Eugenol (80.0%), and Carvacrol (42.28%) as the primary components in T. vulgaris, P. roseum, S. aromaticum, and S. hortensis, respectively. Probit analysis determined the 24-h toxicity of the essential oils diluted in acetone (10%), resulting in LC50 values of 20.125, 14.193, 14.189, and 13.562 μgL-1(air) for T. vulgaris, P. roseum, S. aromaticum, and S. hortensis, respectively. Additionally, sublethal effects were observed at LC25 during the first generation. The treatments significantly impacted oviposition, egg hatchability, survival rate of larvae-pupae, and egg duration, leading to decreased values in these parameters. The essential oils derived from these four plant species demonstrate remarkable potential in the management of S. cerealella. Their vapor toxicity and sublethal effects on female adults underscore their effectiveness as sustainable tools within integrated pest management strategies for stored product pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Illinois

    Google Scholar 

  • Adams AJ, Hall FR, Hoy CW (1990) Evaluating resistance to permethrin in Plutella xylostella (Lepidoptera: Plutellidae) populations using uniformly sized droplets. J Econ Entomol 83(4):1211–1215

    Article  CAS  Google Scholar 

  • Adjalian E, Sessou P, Odjo T, Figueredo G, Kossou D, Avlessi F, Menut C, Sohounhloué D (2015) Chemical composition and insecticidal and repellent effect of essential oils of two Premna species against Sitotroga cerealella. J Insects. https://doi.org/10.1155/2015/319045

    Article  Google Scholar 

  • Akter T, Jahan M, Bhuiyan M (2013) Biology of the Angoumois grain moth, Sitotroga Cerealella (Oliver) on stored rice grain in laboratory condition. J Asiat Soc Bangladesh Sci 39(1):61–67. https://doi.org/10.3329/jasbs.v39i1.16034

    Article  Google Scholar 

  • Athanassiou CG, Rumbos CI, Sakka M, Sotiroudas V (2016) Insecticidal efficacy of phosphine fumigation at low pressure against major stored-product insect species in a commercial dried fig processing facility. Crop Prot 90:177–185

    Article  CAS  Google Scholar 

  • Athanassiou CG, Chiou A, Rumbos CI, Sotiroudas V, Sakka M, Nikolidaki EK, Panagopoulou EA, Kouvelas A, Katechaki E, Karathanos VT (2017) Effect of nitrogen in combination with elevated temperatures on insects, microbes and organoleptic characteristics of stored currants. J Pest Sci 90:557–567

    Article  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Brabec DL, Agrafioti P, Sakka M, Campbell JF (2019) Using immobilization as a quick diagnostic indicator for resistance to phosphine. J Stored Prod Res 82:17–26

    Article  Google Scholar 

  • Ayvaz A, Sagdic O, Karaborklu S, Ozturk I (2010) Insecticidal activity of the essential oils from different plants against three stored-product insects. J Insect Sci 10(21):1–13. https://doi.org/10.1673/031.010.2101

    Article  Google Scholar 

  • Bekele J, Hassanali A (2001) Blend effects in the toxicity of the essential oil constituents of Ocimum Kilimandscharicum and Ocimum kenyenst (Labiateae) on two post-harvest insect pests. Phytochem 57:385–391

    Article  CAS  Google Scholar 

  • Boate Ukoroije R, Abalis Otayor R (2020) Review on the bio-insecticidal properties of some plant secondary metabolites: types, formulations, modes of action, advantages and limitations. Asian J Res Zool 3(4):27–60

    Article  Google Scholar 

  • Boukouvala MC, Kavallieratos NG, Athanassiou CG, Benelli G, Hadjiarapoglou LP (2019) Insecticidal efficacy of six new pyrrole derivatives against four stored-product pests. Environ Sci Pollut Res 26:29845–29856. https://doi.org/10.1007/s11356-019-05961-x

    Article  CAS  Google Scholar 

  • Bounoua-Fraoucene S, Kellouche A, Debras JF (2019) Toxicity of four essential oils against two insect pests of stored grains, Rhyzopertha dominica (Coleoptera: Bostrychidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Afr Entomol 27(2) https://hdl.handle.net/10520/EJC-18685fe05c

  • Bouzidi O, Bouzidi O, Tine S, Tine S, Hamaidia K, Hamaidia K, Tine-Djebbar F, Tine-Djebbar F, Soltani N, Soltani N (2020) Chemical composition and bioefficacy of essential oil from bay laurel shrub (Laurales: Lauraceae) against Culiseta longiareolata (Macquart) (Diptera: Culicidae) Larvae. J Entomol Sci 55:262–272

    Google Scholar 

  • Buenavista RM, Xinyi E, Subramanyam B, Rivera JL, Casada M, Siliveru K (2023) Evaluation of wheat kernel and flour quality as influenced by chlorine dioxide gas treatment. J Stored Prod Res 102:102127. https://doi.org/10.1016/j.jspr.2023.102127

    Article  CAS  Google Scholar 

  • Bushra S, Aslam M (2014) Management of Sitotroga cerealellain stored cereal grains: a review. Arch Phytopathol Pflanzenschutz 47(19):2365–2376. https://doi.org/10.1080/03235408.2013.877191

    Article  Google Scholar 

  • Butrón A, Romay MC, Ordás A, Malvar RA, Revilla P (2008) Genetic and environmental factors reducing the incidence of the storage pest Sitotroga cerealella in maize. Entomol Exp Appl 128(3):421–428. https://doi.org/10.1111/j.1570-7458.2008.00733.x

    Article  Google Scholar 

  • Campolo O, Giunti G, Russo A, Palmeri V, Zappalà L (2018) Essential oils in stored product insect pest control. J Food Qual. https://doi.org/10.1155/2018/6906105

    Article  Google Scholar 

  • Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A (2007) The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzygium aromaticum, L. Myrtaceae): a short review. Phytother Res 21:501–506

    Article  CAS  PubMed  Google Scholar 

  • Chaubey MK (2012) Fumigant toxicity of essential oils and pure compounds against Sitophilus oryzae L. Biol Agric Hortic 28(2):111–119

    Article  Google Scholar 

  • Cotton RT (1960) Pests of stored grain and stored product. Burgess, Minneapolis, p 34

    Google Scholar 

  • Dabiri M, Sefidkon F, Yousefi M, Bashiribod S (2011) Volatile components of Pelargonium roseum R. Br J Essent Oil-Bear Plants 14(1):114–117. https://doi.org/10.1080/0972060x.2011.10643909

    Article  CAS  Google Scholar 

  • de Medeiros Md, da Silva AC, Citó AM, Borges AR, de Lima SG, Lopes JA, Figueiredo RC (2011) In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham. Parasitol Int 60:237–241

    Article  PubMed  Google Scholar 

  • Demeter S, Lebbe O, Hecq F, Nicolis SC, Kenne Kemene T, Martin H, Fauconnier M-L, Hance T (2021) Insecticidal activity of 25 essential oils on the stored product pest. Sitophilus Granarius Foods 10:200. https://doi.org/10.3390/foods10020200

    Article  CAS  PubMed  Google Scholar 

  • Doimo L, Mackay DC, Rintoul GB, D’Arcy BR, Fletcher RJ (1999) Citronellol: geraniol ratios and temperature in geranium (Pelargonium hybrid). J Hortic Sci Biotech 74(4):528–530. https://doi.org/10.1080/14620316.1999.11511147

    Article  CAS  Google Scholar 

  • Emery RN, Nayak MK, Holloway JC (2011) Lessons learned from phosphine resistance monitoring in Australia. Stewart Postharvest Rev 7(3):1–8. https://doi.org/10.2212/spr.2011.3.8

    Article  Google Scholar 

  • Fernandes MJG, Pereira RB, Pereira DM, Fortes AG, Castanheira EMS, Gonçalves MST (2020) New eugenol derivatives with enhanced insecticidal activity. Int J Mol Sci 21:9257. https://doi.org/10.3390/ijms21239257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23(4):213–226. https://doi.org/10.1002/ffj.1875

    Article  CAS  Google Scholar 

  • Gaire S, Zheng W, Scharf ME, Gondhalekar AD (2021) Plant essential oil constituents enhance deltamethrin toxicity in a resistant population of bed bugs (Cimex lectularius L.) by inhibiting cytochrome P450 enzymes. Pestic Biochem Physiol 175:104829. https://doi.org/10.1016/j.pestbp.2021.104829

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Miranda KA, Giraldo JD, Schoebitz M (2022) Essential oils and their formulations for the control of Curculionidae. Pests Front Agron 4:876687. https://doi.org/10.3389/fagro.2022.876687

    Article  Google Scholar 

  • Ghodjani Z, Shakarami J, Mardani-Talaee M, Serrão JE (2023) Effect of different wheat cultivars on two sex life table parameters of Sitotroga cerealella (Lepidoptera: Gelechiidae). J Stored Prod Res 101:102097

    Article  Google Scholar 

  • Gopalkrishnan M, Narayanan CS, Mathew A (1984) Sesquiterpene hydrocarbons from clove oil. Lebensm -Wiss u-Technol 17:42–43

    Google Scholar 

  • GRDC (2014) Pressure testing sealable silos. Grain storage fact sheet, Grain Res Dev Corp Kingston, Aust. http://storedgrain.com.au/pressure-testing/

  • Hanif CMS, Hasan M, Sagheer M, Saleem S, Ali K, Akhtar S (2015) comparative insecticidal effectiveness of essentialoilsofthree locally grown plants and phosphine gas against Trogoderma granarium. Pak J Agric Sci 52(3):709–715

    Google Scholar 

  • Hansen LS, Jensen KMV (2002) Effect of temperature on parasitism and host-feeding of Trichogramma turkestanica (Hymenoptera: Trichogrammatidae) on Ephestia kuehniella (Lepidoptera: Pyralidae). J Econ Entomol 95:50–56

    Article  CAS  PubMed  Google Scholar 

  • Hansen LS, Skovgard H, Hell K (2004) Life table study of Sitotroga cerealella (Lepidoptera: Gelechiidae), a strain from West Africa. J Econ Entomol 97(4):1484–1490

    Article  PubMed  Google Scholar 

  • Hashem MY, Ismail II, Lutfallah AF, Abd El-Rahman SF (2014) Effects of carbon dioxide on Sitotroga cerealella (Olivier) larvae and their enzyme activity. J Stored Prod Res 59:17–23. https://doi.org/10.1016/j.jspr.2014.04.002

    Article  Google Scholar 

  • Hassan S, Ahmad M, Aslam M (2014) Assessment of Sitotroga cerealella losses in different sorghum varieties under controlled conditions. Arch Phytopathol Pflanzenschutz 47(8):993–999. https://doi.org/10.1080/03235408.2013.828398

    Article  Google Scholar 

  • Hill DS (2002) Pests of stored food stuffs and their control. Kluwer Academic Publishers, Boston, pp 55–63

    Google Scholar 

  • Hill MP, Macfadyen S, Nash MA (2017) Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ 5:e4179. https://doi.org/10.7717/peerj.4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houghton PJ, Ren Y, Howes MJ (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ho S-H, Lee H-C, Yap Y-L (2002) Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 38(5):403–412. https://doi.org/10.1016/s0022-474x(01)00042-x

    Article  CAS  Google Scholar 

  • Isman MB (2005) Problems and opportunities for the commercialization of botanical insecticides. In: Regnault-Roger C, Philogene BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier, Paris, pp 283–291

    Google Scholar 

  • Islam W, Noman A, Akutse KS, Qasim M, Ali H, Haider I, Hashem M, Alamri S, al Zoubi OM, Khan KA, (2021) Phyto-derivatives: an efficient eco-friendly way to manage Trogoderma granarium (Everts) (Coleoptera: Dermestidae). Int J Trop Insect Sci 41:915–926. https://doi.org/10.1007/s42690-020-00370-x

    Article  Google Scholar 

  • Izakmehri K, Saber M, Mehrvar A, Hassanpouraghdam MB, Vojoudi S (2013) Lethal and sublethal effects of essential oils from Eucalyptus camaldulensis and Heracleum persicum against the adults of Callosobruchus maculatus. J Insect Sci 13:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Karabörklü S, Ayvaz A, Yilmaz S (2010) Bioactivities of different essential oils against the adults of two stored product insects. Pakistan J Zool 42(6):679–686

    Google Scholar 

  • Karimi-Pormehr MS, Borzoui E, Naseri B, Dastjerdi HR, Mansouri SM (2018) Two-sex life table analysis and digestive physiology of Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) on different barley cultivars. J Stored Prod Res 75:64–71. https://doi.org/10.1016/j.jspr.2017.10.005

    Article  Google Scholar 

  • Katar D, Kacar O, Kara N, Aytaç Z, Göksu E, Kara S, Katar N, Erbaş S, Telcic I, Elmastaş M (2017) Ecological variation of yield and aroma components of summer savory (Satureja hortensis L.). J Appl Res Med Aromat Plants 7:131–135. https://doi.org/10.1016/j.jarmap.2017.07.005

    Article  Google Scholar 

  • Konstantopoulou I, Vassilopoulou L, Mauragani-Tsipidov P, Scouras ZG (1992) Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia 48:616–619

    Article  CAS  PubMed  Google Scholar 

  • Kostyukovsky M, Ravid U, Shaaya E (2002) The potential use of plant volatiles for the control of stored product insects and quarantine pests in cut flowers. Acta Hortic 576:347–358. https://doi.org/10.17660/actahortic.2002.576

    Article  CAS  Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84

    Google Scholar 

  • Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC (2001) Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L). Pest Manag Sci 57:548–553

    Article  CAS  PubMed  Google Scholar 

  • LeOra Software (1987) Polo-PC: a user guide to probit or logit analysis. LeOra Software, Berkeley

  • Magierowicz K, Górska-Drabik E, Sempruch C (2018) The insecticidal activity of Satureja hortensis essential oil and its active ingredient-carvacrol against Acrobasis advenella (Zinck) (Lepidoptera, Pyralidae). Pestic Biochem Phys. https://doi.org/10.1016/j.pestbp.2018.11.010

    Article  Google Scholar 

  • Mele MOG (2007) Inventaire des insectes des stocks de riz au Bénin: estimation des Pertes occasionnées. Mémoire de licence à l’Université d’Abomey-Calavi, Bénin, p 72p

    Google Scholar 

  • Nayak MK, Daglish GJ, Phillips TW, Ebert PR (2020) Resistance to the fumigant phosphine and its management in insect pests of stored products: a global perspective. Annu Rev Entomol 65:333–350

    Article  CAS  PubMed  Google Scholar 

  • Negahban M, Moharramipour S (2007) Fumigant toxicity of Eucalyptus intertexta, Eucalyptus sargentii and Eucalyptus camaldulensis against stored-product beetles. J Appl Entomol 131(4):256–261. https://doi.org/10.1111/j.1439-0418.2007.01152.x

    Article  Google Scholar 

  • Pandey SK, Upadhyay S, Tripathi AK (2009) Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res 105(2):507–512. https://doi.org/10.1007/s00436-009-1429-6

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Feng Y-X, Qi X-J, Wang Y, Almaz B, Xi C, Du S-S (2020) Toxicity and repellent activity of essential oil from Mentha piperita Linn. leaves and its major monoterpenoids against three stored product insects. Environ Sci Pollut Res 27:7618–7627. https://doi.org/10.1007/s11356-019-07081-y

    Article  CAS  Google Scholar 

  • Park JH, Jeon YJ, Lee CH, Chung N, Lee HS (2017) Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci Rep 7:40902. https://doi.org/10.1038/srep40902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parreira DS, Alcántara-de la Cruz R, Rodrigues Dimaté FA, Batista LD, Ribeiro RC, Rigueira Ferreira GA, Zanuncio JC (2019) Bioactivity of ten essential oils on the biological parameters of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) adults. Ind Crops Prod 127:11–15. https://doi.org/10.1016/j.indcrop.2018.10.06

    Article  CAS  Google Scholar 

  • Pathak VM, Verma VK, Rawat BS, Kaur B, Babu N, Sharma A, Dewali S, Yadav M, Kumari R, Singh S, Mohapatra A, Pandey V, Rana N, Cunill JM (2022) Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: a comprehensive review. Front Microbiol 13:962619. https://doi.org/10.3389/fmicb.2022.962619

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavela R (2007) Lethal and sublethal effects of thyme oil (Thymus vulgaris L.) on the house fly (Musca domestica Lin.). J Essent Oil-Bear Plants 10(5):346–356. https://doi.org/10.1080/0972060X.2007.10643566

    Article  CAS  Google Scholar 

  • Pavela R (2012) Sublethal effects of some essential oils on the cotton leafworm Spodoptera littoralis (Boisduval). J Essent Oil-Bear Plants 15(1):144–156. https://doi.org/10.1080/0972060x.2012.106440

    Article  CAS  Google Scholar 

  • Pino JA, Marbot R, Agüero J, Fuentes V (2001) Essential oil from buds and leaves of clove (Syzygium aromaticum (L.) Merr. et Perry) grown in Cuba. J Essent Oil-Bear Plants 13(4):278–279. https://doi.org/10.1080/10412905.2001.9699693

    Article  CAS  Google Scholar 

  • Piri A, Sahebzadeh N, Zibaee A, Sendi JJ, Shamakhi L, Shahriari M (2020) Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 256:127103. https://doi.org/10.1016/j.chemosphere.2020.127103

    Article  CAS  PubMed  Google Scholar 

  • Regnault-Roger C (1997) The potential of botanical essential oils for insect pest control. Integr Pest Manag Rev 2:25–34

    Article  Google Scholar 

  • Regnault-Roger C, Hamraoui A (1994) Inhibition of the reproduction of Acanthoscelides obtectus Say (Coleoptera), a kidney bean (Phaseolus vulgaris) bruchid, by aromatic essential oils. Crop Prot 13:624–628

    Article  Google Scholar 

  • Regnault-Roger C, Hamrouni A (1995) Fumigant toxic activity reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say), a bruchid of kidney beans. J Stored Prod Res 31:291–299

    Article  CAS  Google Scholar 

  • Riudavets J, Castañé C, Alomar O, Pons MJ, Gabarra R (2010) The use of carbon dioxide at high pressure to control nine stored-product pests. J Stored Prod Res 46(4):228–233. https://doi.org/10.1016/j.jspr.2010.05.005

    Article  Google Scholar 

  • Robertson JL, Savin NE, Savin NE, Preisler HK (2007) Bioassays with arthropods. CRC Press, Boca Raton, p 224

    Book  Google Scholar 

  • Rossi YE, Palacios SM (2013) Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L. adults in the absence and presence of a P450 inhibitor. Acta Trop 127(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Rozman V, Kalinovic I, Korunic Z (2007) Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J Stored Prod Res 43(4):349–355. https://doi.org/10.1016/j.jspr.2006.09.001

    Article  CAS  Google Scholar 

  • Ryan MF, Byrne O (1988) Plant-insect coevolution and inhibition of acetylcholinesterase. J Chem Ecol 14:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Sakka MK, Athanassiou CG (2023) Evaluation of phosphine resistance in three sitophilus species of different geographical origins using two diagnostic protocols. Agriculture 13(5):1068

    Article  CAS  Google Scholar 

  • Sakka MK, Gatzali F, Karathanos VT, Athanassiou CG (2020) Effect of nitrogen on phosphine-susceptible and-resistant populations of stored product insects. InSects 11(12):885

    Article  PubMed  PubMed Central  Google Scholar 

  • SAS Institute Inc (2003) SAS/STAT user’s guide, Version 8. SAS Institute Inc, Cary

    Google Scholar 

  • Schlipalius DI, Tuck AG, Pavic H, Daglish GJ, Nayak MK, Ebert PR (2019) A high-throughput system used to determine frequency and distribution of phosphine resistance across large geographical regions. Pest Manag Sci 75(4):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Sefidkon F, Abbasi K, Khaniki GB (2006) Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem 99(1):19–23. https://doi.org/10.1016/j.foodchem.2005.07.026

    Article  CAS  Google Scholar 

  • Shaaya E, Ravid U, Paster N, Juven B, Zisman U, Pissarev V (1991) Fumigant toxicity of essential oils against four major stored-product insects. J Chem Ecol 17(3):499–504. https://doi.org/10.1007/bf00982120

    Article  CAS  PubMed  Google Scholar 

  • Shaaya E, Kostjukovski M, Eilberg J, Sukprakarn C (1997) Plant oils as fumigants and contact insecticides for the control of stored-product insects. J Stored Prod Res 33(1):7–15. https://doi.org/10.1016/s0022-474x(96)00032-x

    Article  CAS  Google Scholar 

  • Shah S, Elgizawy KK, Shi C-M, Yao H, Yan W-H, Li Y, Wang X-P, Wu G, Yang F-L (2023) Diallyl trisulfide, a Biologically active component of garlic essential oil, decreases male fertility in Sitotroga cerealella by impairing dimorphic spermatogenesis, sperm motility and lipid homeostasis. Cells 12:669. https://doi.org/10.3390/cells12040669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa AD, Faroni LDA, Guedes RNC, Tótola MR, Urruchi WI (2008) Ozone as a management alternative against phosphine-resistant insect pests of stored products. J Stored Prod Res 44(4):379–385

    Article  CAS  Google Scholar 

  • Srivastava AK, Srivastava SK, Syamsundar KV (2005) Bud and leaf essential oil composition of Syzygium aromaticum from India and Madagascar. Flavour Fragr J 20:51–53

    Article  CAS  Google Scholar 

  • Tabari MA, Youssefi MR, Esfandiari A, Benelli G (2017) Toxicity of β-citronellol, geraniol and linalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res Vet Sci 114:36–40. https://doi.org/10.1016/j.rvsc.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  • Tak JH, Isman MB (2015) Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci Rep 5:12690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Throne JE, Weaver DK (2013) Impact of temperature and relative humidity on life history parameters of adult Sitotroga cerealella (Lepidoptera: Gelechiidae). J Stored Prod Res 55:128–133

    Article  Google Scholar 

  • Usha Rani P (2012) Fumigant and contact toxic potential of essential oils from plant extracts against stored product pests. J Biopestic 5(2):120–128

    Google Scholar 

  • Wang D, He Y, Guo X, Luo Y (2012) Acute toxicities and sublethal effects of some conventional insecticides on Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 105:1104–1476

    Article  Google Scholar 

  • Wu M-Y, Ying Y-Y, Zhang S-S, Li X-G, Yan W-H, Yao Y-C, Wu G, Yang F-L (2020) Effects of Diallyl trisulfide, an active substance from garlic essential oil, on energy metabolism in male moth Sitotroga cerealella (Olivier). InSects 11(5):270. https://doi.org/10.3390/insects11050270

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Isman MB, Tak J-H (2020) Insecticidal activity of 28 essential oils and a commercial product containing Cinnamomum cassia Bark essential oil against Sitophilus zeamais Motschulsky. InSects 11:474. https://doi.org/10.3390/insects11080474

    Article  PubMed  PubMed Central  Google Scholar 

  • Zettler J, Arthur FH (2000) Chemical control of stored product insects with fumigants and residual treatments. Crop Prot 19:577–582. https://doi.org/10.1016/S0261-2194(00)00075-2

    Article  CAS  Google Scholar 

  • Zhang Z, Qiu C, Li X, McClements DJ, Jiao A, Wang J, Jin Z (2021) Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols. Trends Food Sci Technol 116:492–500. https://doi.org/10.1016/j.tifs.2021.08.009

    Article  CAS  Google Scholar 

  • Zhang Y, Gao S, Zhang P, Sun H, Lu R, Yu R, Li Y, Zhang K, Li B (2022) Response of xenobiotic biodegradation and metabolic genes in Tribolium castaneum following eugenol exposure. Mol Genet Genomics 297:801–815. https://doi.org/10.1007/s00438-022-01890-6

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann RC, Aragão CEDEC, Araújo PJPDE, Benatto A, Chaaban A, Martins CEN, Wdo A, Cipriano RR, Zawadneak MAC (2021) Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot 144:105575. https://doi.org/10.1016/j.cropro.2021.105575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Rahmani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary table. Chemical constituents of the essential oils extracted from T. vulgaris, S. hortensis, P. roseum, and S. aromaticum. / Constituyentes químicos de los aceites esenciales extraídos de T. vulgaris, S. hortensis, P. roseum y S. aromaticum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghoorchian, M., Rahmani, S. & Weisany, W. Toxicity effects of several medicinal plants essential oils on Angoumois grain moth (Sitotroga cerealella) female adults. J Plant Dis Prot 130, 1263–1271 (2023). https://doi.org/10.1007/s41348-023-00792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00792-y

Keywords

Navigation