Skip to main content
Log in

Soft human–machine interfaces: design, sensing and stimulation

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Human–machine interfaces (HMIs) are widely studied to understand the human biomechanics and/or physiology and the interaction between humans and machines/robots. The conventional rigid or invasive HMIs that record/send information from/to human bodies have significant disadvantages in practice for long-term, portable, and comfortable usages. To better adapt to natural soft skins, soft HMIs have been designed to deform into arbitrary shapes, and their bendable, stretchable, compressible and twistable properties offer a huge potential in future personalized applications. This paper presents a survey on various soft HMIs in terms of design, sensing, stimulation as well as their applications. Specifically, tactile/motion/bio-potential sensors are categorized for recording various data from human bodies, while stimulators are discussed for information feedback and motion activation to human bodies. It is anticipated that soft HMIs will promote the interaction among humans, machines/robots and environment to achieve desired coexisting-cooperative-cognitive function in a robot system, named as Tri-Co Robot, for the human-centered applications, such as rehabilitation, medical monitoring and human–robot cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abdeljaber, O., Avci, O., Inman, D.J.: Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. J. Sound Vibration. 363 (2015)

  • Ankit, N., Tiwari, M., Rajput, N.A., Chien, Mathews, N.: Highly transparent and integrable surface texture change device for localized tactile feedback. Small, 1702312 (2017)

  • Argall, B.D., Billard, A.G.: A survey of tactile human-robot interactions. Robot. Autonomous Syst. 58, 1159–1176 (2010)

    Google Scholar 

  • Barnett-Cowan, M., Harris, L.R.: Temporal processing of active and passive head movement. Experimental Brain Research experimentelle Hirnforschung expérimentation Cérébrale, 214:27–35 (2011)

  • Beni, G., Hackwood, S., Trimmer, W.S.: High-precision robot system for inspection and testing of electronic devices. In: IEEE International Conference on Robotics and Automation. Proceedings, pp. 428–441 (1984)

  • Bishop-Moser, J., Kota, S.: Design and modeling of generalized fiber-reinforced pneumatic soft actuators. IEEE Trans. Rob. 31, 536–545 (2017)

    Google Scholar 

  • Brown, C., Cowell, M., Plont, C.A., Hahn, H., Mascareñas, D.: A vibro-haptic human–machine interface for structural health monitoring applications. Struct. Health Monit. 13, 671–685 (2014)

    Google Scholar 

  • Bu, T., Xiao, T., Yang, Z., Liu, G., Fu, X., Nie, J., Guo, T., Pang, Y., Zhao, J., Xi, F., Zhang, C., Wang, Z.L.: Stretchable triboelectric–photonic smart skin for tactile and gesture sensing. Advanced Materials, 0:1800066

  • Budzynski, T.: The clinical guide to sound and light. Zquavee Info (2009)

  • Calomeni, M.R., Rocha, J.A., Silva, A.P., Ribeiro, L.H., Marques, L., Siza, M.A., Silva, V.F.: Brain stimulation used as biofeedback training for recovery of motor functions deteriorated by stroke. Arq. Neuropsiquiatr. 71, 159–164 (2013)

    Google Scholar 

  • Chai, G., Sui, X., Li, S., He, L., Lan, N.: Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation. J. Neural Eng. 12, 066002 (2015)

    Google Scholar 

  • Chase, T.A., Luo, R.C.: A thin-film flexible capacitive tactile normal/shear force array sensor. In: IEEE IECON International Conference on Industrial Electronics, Control, and Instrumentation, pp. 1196–1201 vol. 2 (1995)

  • Chen, B.J., Zheng, E.H., Fan, X.D., Liang, T., Wang, Q.N., Wei, K.L., Wang, L.: Locomotion mode classification using a wearable capacitive sensing system. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 744–755 (2013)

    Google Scholar 

  • Chen, B., Bai, Y., Xiang, F., Sun, J.Y., Mei Chen, Y., Wang, H., Zhou, J., Suo, Z.: Stretchable and transparent hydrogels as soft conductors for dielectric elastomer actuators. J. Polym. Sci., Part B: Polym. Phys. 52, 1055–1060 (2014)

    Google Scholar 

  • Cheng, H.Y., Wang, S.D.: Mechanics of interfacial delamination in epidermal electronics systems. Journal of Applied Mechanics-Transactions of the Asme. 81 (2014)

  • Cheng, T., Zhang, Y.-Z., Zhang, J.-D., Lai, W.-Y., Huang, W.: High-performance free-standing PEDOT: PSS electrodes for flexible and transparent all-solid-state supercapacitors. J. Mater. Chem. A 4, 10493–10499 (2016)

    Google Scholar 

  • Chossat, J.B., Tao, Y., Duchaine, V., Park, Y.L.: Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing. In: IEEE International Conference on Robotics and Automation, pp. 2568–2573 (2015)

  • Cui, C., Bian, G.B., Hou, Z.G., Zhao, J., Zhou, H.: A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans. Biomed. Circuits Syst. 11, 889–899 (2017)

    Google Scholar 

  • Da, S.V., Ribeiro, A.P., Dos Santos, V.A., Nardi, A.E., King, A.L., Calomeni, M.R.: Stimulation by light and sound: therapeutics effects in humans. Systematic review. Clin. Pract. Epidemiol. Mental Health 11, 150–154 (2015)

    Google Scholar 

  • Dario, P., Rossi, D.D., Giannotti, C., Vivaldi, F., Pinotti, P.C.: Ferroelectric polymer tactile sensors for prostheses. Ferroelectrics 60, 199–214 (1984)

    Google Scholar 

  • Ding, H., Yang, X., Zheng, N., Li, M., Lai, Y., Wu, H.: Tri-Co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. Natl. Sci. Rev. nwx148–nwx148 (2017)

  • Ding, M., Matsubara, T., Funaki, Y., Ikeura, R., Mukai, T., Ogasawara, T.: Generation of comfortable lifting motion for a human transfer assistant robot. Int. J. Intell. Robot. Appl. 1, 74–85 (2017)

    Google Scholar 

  • Domazet, M.: Human–machine interaction based on EMG measurements (2016)

  • Dong, W., Zhu, C., Ye, D., Huang, Y.: Optimal design of self-similar serpentine interconnects embedded in stretchable electronics. Appl. Phys. A 123, 428 (2017a)

    Google Scholar 

  • Dong, W., Xiao, L., Zhu, C., Ye, D., Wang, S., Huang, Y., Yin, Z.: Theoretical and experimental study of 2D conformability of stretchable electronics laminated onto skin. SCIENCE CHINA Technol. Sci. 60, 1415 (2017b)

    Google Scholar 

  • Dong, W., Xiao, L., Hu, W., Zhu, C., Huang, Y., Yin, Z.: Wearable human–machine interface based on PVDF piezoelectric sensor. Trans. Inst. Meas. Control 39, 398–403 (2017c)

    Google Scholar 

  • Duan, Y., Huang, Y., Yin, Z., Bu, N., Dong, W.: Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale 6, 3289–3295 (2014)

    Google Scholar 

  • Ethier, C., Oby, E.R., Bauman, M.J., Miller, L.E.: Restoration of grasp following paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 (2012)

    Google Scholar 

  • Fan, J.A., Yeo, W.H., Su, Y., Hattori, Y., Lee, W., Jung, S.Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R.J., Huang, Y., Rogers, J.A.: Fractal design concepts for stretchable electronics. Nat Commun 5, 3266 (2014)

    Google Scholar 

  • Flynn, B.O., Sanchez, J., Angove, P., Connolly, J., Condell, J., Curran, K.: Novel smart sensor glove for arthritis rehabilitation. 1–6 (2014)

  • Franceschi, M., Seminara, L., Dosen, S., Strbac, M., Valle, M., Farina, D.: A system for electrotactile feedback using electronic skin and flexible matrix electrodes: experimental evaluation. IEEE Trans. Haptics 1–1 (2016)

  • Freeman, C.T.: Electrode array-based electrical stimulation using ILC with restricted input subspace. Control Eng. Pract. 23, 32–43 (2014)

    Google Scholar 

  • Gang, G., Wei, H., Jinjun, S., Xiaochen, D.: Recent progress of flexible and wearable strain sensors for human-motion monitoring. J. Semicond. 39, 011012 (2018)

    Google Scholar 

  • Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.H., Brooks, G.A., Davis, R.W., Javey, A.: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016)

    Google Scholar 

  • George, T., Islam, M.S., Dutta, A.K., Kim, D.-H., Lee, J., Park, M.: High performance bio-integrated devices. 9083:90831H (2014)

  • Gonzalez, M., Axisa, F., Bulcke, M.V., Brosteaux, D., Vandevelde, B., Vanfleteren, J.: Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 48, 825–832 (2008)

    Google Scholar 

  • Gu, G.Y., Gupta, U., Zhu, J., Zhu, L.M., Zhu, X.: Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 1–8 (2017)

  • Gu, G.Y., Zhu, J., Zhu, L.M., Zhu, X.: A survey on dielectric elastomer actuators for soft robots. Bioinspir Biomim. 12:011003 (2017)

  • Gulrez, T., Tognetti, A.: A sensorized garment controlled virtual robotic wheelchair. J. Intell. Rob. Syst. 74, 847–868 (2014)

    Google Scholar 

  • Güneysu, A., Akin, H.L.: An SSVEP based BCI to control a humanoid robot by using portable EEG device. In: Engineering in medicine & biology society, 6905 (2013)

  • Guo, X., Pei, W., Wang, Y., Chen, Y., Zhang, H., Wu, X., Yang, X., Chen, H., Liu, Y., Liu, R.: A human–machine interface based on single channel EOG and patchable sensor. Biomed. Signal Process. Control 30, 98–105 (2016)

    Google Scholar 

  • Guo, W., Sheng, X., Liu, H., Zhu, X.: Toward an enhanced human-machine interface for upper-limb prosthesis control with combined EMG and NIRS signals. IEEE Trans. Hum. Mach. Syst. 47, 564–575 (2017)

    Google Scholar 

  • Hammock, M.L., Chortos, A., Tee, B.C., Tok, J.B., Bao, Z.: 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013)

    Google Scholar 

  • Han, Q., Chen, X., Tang, K., Li, P.: A non-contact human-computer interaction application design based on electrostatic current of human body. Int. J. Comput. Appl. Technol. 53, 23–31 (2016a)

    Google Scholar 

  • Han, S., Kim, M.K., Wang, B., Wie, D.S., Wang, S., Lee, C.H.: mechanically reinforced skin-electronics with networked nanocomposite elastomer. Adv. Mater. 28, 10257 (2016b)

    Google Scholar 

  • Haviv, L., Friedman, H., Bierman, U., Glass, I., Plotkin, A., Weissbrod, A., Shushan, S., Bluvshtein, V., Aidinoff, E., Sobel, N., Catz, A.: Using a sniff controller to self-trigger abdominal functional electrical stimulation for assisted coughing following cervical spinal cord lesions. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1461–1471 (2017)

    Google Scholar 

  • He, J., Zhang, D., Sheng, X., Li, S., Zhu, X.: Invariant surface EMG feature against varying contraction level for myoelectric control based on muscle coordination. IEEE J. Biomed. Health Inform. 19, 874 (2015)

    Google Scholar 

  • He, X., Zi, Y., Yu, H., Zhang, S.L., Wang, J., Ding, W., Zou, H., Zhang, W., Lu, C., Wang, Z.L.: An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy 39, 328–336 (2017)

    Google Scholar 

  • Hong, W., Zhao, X., Suo, Z.: Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids 58, 558–577 (2010)

    MathSciNet  MATH  Google Scholar 

  • Hu, Y., Wang, Z.L.: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 14, 3–14 (2015)

    Google Scholar 

  • Hua, Q., Sun, J., Liu, H., Bao, R., Yu, R., Zhai, J., Pan, C., Wang, Z.L.: Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018)

    Google Scholar 

  • Huang, Y., Yin, Z., Xiong, Y.: Thermomechanical analysis of thin films on temperature-dependent elastomeric substrates in flexible heterogeneous electronics. Thin Solid Films 518, 1698–1702 (2010)

    Google Scholar 

  • Huang, X., Liu, Y., Cheng, H., Shin, W.J., Fan, J.A., Liu, Z., Lu, C.J., Kong, G.W., Chen, K., Patnaik, D.: Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Func. Mater. 24, 3846–3854 (2014a)

    Google Scholar 

  • Huang, Y., Wang, Y., Xiao, L., Liu, H., Dong, W., Yin, Z.: Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14, 4205–4212 (2014b)

    Google Scholar 

  • Huang, Y., Dong, W., Huang, T., Wang, Y., Xiao, L., Su, Y., Yin, Z.: Self-similar design for stretchable wireless LC strain sensors. Sens. Actuators, A 224, 36–42 (2015)

    Google Scholar 

  • Huang, X., Liu, Y., Kong, G.W., Seo, J.H., Ma, Y., Jang, K.-I., Fan, J.A., Mao, S., Chen, Q., Li, D., Liu, H., Wang, C., Patnaik, D., Tian, L., Salvatore, G.A., Feng, X., Ma, Z., Huang, Y., Rogers, J.A.: Epidermal radio frequency electronics for wireless power transfer. Microsyst. Nanoeng. 2, 16052 (2016)

    Google Scholar 

  • Huang, Y., Ding, Y., Bian, J., Su, Y., Zhou, J., Duan, Y., Yin, Z.: Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40, 432–439 (2017)

    Google Scholar 

  • Jaquier, N., Connan, M., Castellini, C., Calinon, S., Jaquier, N., Connan, M., Castellini, C., Calinon, S., Jaquier, N., Connan, M.: Combining electromyography and tactile myography to improve hand and wrist activity detection in prostheses. Technologies 5, 64 (2017)

    Google Scholar 

  • Jeong, S.H., Zhang, S., Hjort, K., Hilborn, J., Wu, Z.: PDMS based elastomer tuned soft, stretchable, and sticky for epidermal electronics. Advanced Materials (2016)

  • Jeong, J.W., Yeo, W.H., Akhtar, A., Norton, J.J., Kwack, Y.J., Li, S., Jung, S.Y., Su, Y., Lee, W., Xia, J., Cheng, H., Huang, Y., Choi, W.S., Bretl, T., Rogers, J.A.: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013)

    Google Scholar 

  • Jeong, S.H., Hjort, K., Wu, Z.: Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer. Sci Rep 5, 8419 (2014)

    Google Scholar 

  • Jeong, J., Bae, S.H., Min, K.S., Seo, J.M., Chung, H., Kim, S.J.: A miniaturized, eye-conformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans. Bio-Med. Eng. 62, 982–989 (2015)

    Google Scholar 

  • Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. IEEE Trans. Syst. Man Cybern. Part C 40, 13–24 (2009)

    Google Scholar 

  • Ji, X., Liu, H., Li, Y., Brown, D.: Visual-based view-invariant human motion analysis: a review. 5177:741–748 (2008)

  • Jin, L., Xian, H., Jiang, Y., Niu, Q., Xu, M., Yang, D.: Research on evaluation model for secondary task driving safety based on driver eye movements. Adv. Mech. Eng. 6, 624561 (2015)

    Google Scholar 

  • Johansson, R.S.: Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J. Physiol. 281, 101 (1978)

    Google Scholar 

  • Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19, 456–466 (2017)

    Google Scholar 

  • Jung, S., Kim, J.H., Kim, J., Choi, S., Lee, J., Park, I., Hyeon, T., Kim, D.H.: Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv. Mater. 26, 4825–4830 (2014)

    Google Scholar 

  • Kaczmarek, K.A.: The tongue display unit (TDU) for electrotactile spatiotemporal pattern presentation. Scientia Iranica, 18:1476–1485 (2011)

  • Kajimoto, H., Inami, M., Kawakami, N., Tachi, S.: SmartTouch—augmentation of skin sensation with electrocutaneous display. In: Haptic interfaces for virtual environment and teleoperator systems. Haptics. Proceedings. Symposium on, pp. 40–46 (2003)

  • Kato, Y., Iba, S., Sekitani, T., Noguchi, Y.: A flexible, lightweight Braille sheet display with plastic actuators driven by an organic field-effect transistor active matrix. In: Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 4–100 (2005)

  • Kercel, S., Bach-Y-Rita, P.: Human nervous system, noninvasive coupling of electronically generated data into: Wiley (2006)

  • Khang, D.-Y., Rogers, J.A., Lee, H.H.: Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv. Func. Mater. 19, 1526–1536 (2009)

    Google Scholar 

  • Kim, D.-H., Rogers, J.A.: Stretchable electronics: materials strategies and devices. Adv. Mater. 20, 4887–4892 (2008)

    Google Scholar 

  • Kim, D.H., Lu, N., Ma, R., Kim, Y.S., Kim, R.H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.I., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A.: Epidermal electronics. Science 333, 838–843 (2011)

    Google Scholar 

  • Kim, D.H., Wang, S., Keum, H., Ghaffari, R., Kim, Y.S., Tao, H., Panilaitis, B., Li, M., Kang, Z., Omenetto, F., Huang, Y., Rogers, J.A.: Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures for targeted wound monitoring and therapy. Small 8, 3263–3268 (2012)

    Google Scholar 

  • Kim, T.I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.H., Lu, C., Lee, S.D., Song, I.S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., Bruchas, M.R.: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013a)

    Google Scholar 

  • Kim, T.I., Mccall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.H.: Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013b)

    Google Scholar 

  • Kim, J., Lee, M., Shim, H.J., Ghaffari, R., Cho, H.R., Son, D., Jung, Y.H., Soh, M., Choi, C., Jung, S., Chu, K., Jeon, D., Lee, S.T., Kim, J.H., Choi, S.H., Hyeon, T., Kim, D.H.: Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 5, 5747 (2014a)

    Google Scholar 

  • Kim, J., Lee, M., Rhim, J.S., Wang, P., Lu, N., Kim, D.H.: Next-generation flexible neural and cardiac electrode arrays. Biomed. Eng. Lett. 4, 95–108 (2014b)

    Google Scholar 

  • Kim, C.C., Lee, H.H., Oh, K.H., Sun, J.Y.: Highly stretchable, transparent ionic touch panel. Science 353, 682 (2016)

    Google Scholar 

  • Ko, H.C., Stoykovich, M.P., Song, J., Malyarchuk, V., Choi, W.M., Yu, C.J., Rd, G.J., Xiao, J., Wang, S., Huang, Y.: A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 454, 748 (2008)

    Google Scholar 

  • Lang, C., Fang, J., Shao, H., Ding, X., Lin, T.: High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 7, 11108 (2016)

    Google Scholar 

  • Lee, H.K., Chung, J., Chang, S.I., Yoon, E.: Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors. J. Microelectromech. Syst. 17, 934–942 (2008)

    Google Scholar 

  • Lee, J.W., Xu, R., Lee, S., Jang, K.I., Yang, Y., Banks, A., Yu, K.J., Kim, J., Xu, S., Ma, S., Jang, S.W., Won, P., Li, Y., Kim, B.H., Choe, J.Y., Huh, S., Kwon, Y.H., Huang, Y., Paik, U., Rogers, J.A.: Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl. Acad. Sci. U.S.A. 113, 6131–6136 (2016)

    Google Scholar 

  • Lee, C., Kim, M., Kim, Y.J., Hong, N., Ryu, S., Kim, H.J., Kim, S.: Soft robot review. Int. J. Control Autom. Syst. 15, 3–15 (2017a)

    Google Scholar 

  • Lee, C., Kim, M., Kim, Y.J., Hong, N., Ryu, S., Kim, H.J., Kim, S.: Soft robot review. Int. J. Control Autom. Syst. 15, 3–15 (2017b)

    Google Scholar 

  • Li, R., Li, M., Su, Y., Song, J., Ni, X.: An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 9, 8476 (2013)

    Google Scholar 

  • Lim, S., Son, D., Kim, J., Lee, Y.B., Song, J.-K., Choi, S., Lee, D.J., Kim, J.H., Lee, M., Hyeon, T., Kim, D.-H.: Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Func. Mater. 25, 375–383 (2015a)

    Google Scholar 

  • Lim, S., Son, D., Kim, J., Lee, Y.B., Song, J.K., Choi, S., Lee, D.J., Kim, J.H., Lee, M., Hyeon, T.: Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Func. Mater. 25, 375–383 (2015b)

    Google Scholar 

  • Lipomi, D.J., Vosgueritchian, M., Tee, B.C., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788–792 (2011)

    Google Scholar 

  • Liu, C.H., Huang, G.F., Chen, T.L.: An evolutionary soft-add topology optimization method for synthesis of compliant mechanisms with maximum output displacement. J. Mech. Robot. 9 (2017)

  • Liu, C.H., Huang, G.F., Chiu, C.H., Pai, T.Y.: Topology synthesis and optimal design of an adaptive compliant gripper to maximize output displacement. J. Intell. Robot. Syst. 1–18 (2017)

  • Liu, C.H., Chen, W., Su, W., Sun, C.N.: Numerical and experimental analysis of the automated demolding process for PDMS microfluidic devices with high-aspect ratio micropillars. Int. J. Adv. Manuf. Technol. 80, 401–409 (2015)

    Google Scholar 

  • Liu, Y., Norton, J.J., Qazi, R., Zou, Z., Ammann, K.R., Liu, H., Yan, L., Tran, P.L., Jang, K.I., Lee, J.W.: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci. Adv. 2, e1601185 (2016)

    Google Scholar 

  • H. Liu, Z. Ju, X. Ji, C. S. Chan, and M. Khoury, Human Motion Sensing and Recognition: Springer Berlin Heidelberg, 2017

  • Löffler, S., Libberton, B., Richter-Dahlfors, A.: Organic bioelectronic tools for biomedical applications. Electronics 4, 879–908 (2015)

    Google Scholar 

  • Löhrer, M., Lemm, Y.S., Gloy, Y.S., Gries, T.: Adaptive supporting systems for a competence-enhancing human-machine interaction in new production processes. Nature 205, 773–776 (2015)

    Google Scholar 

  • Lu, N., Kim, D.-H.: Flexible and stretchable electronics paving the way for soft robotics. Soft Robot. 1, 53–62 (2014)

    Google Scholar 

  • Lu, N., Lu, C., Yang, S., Rogers, J.: Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv. Func. Mater. 22, 4044–4050 (2012)

    Google Scholar 

  • Malešević, N.M., Maneski, L.Z.P., Ilić, V., Jorgovanović, N., Bijelić, G., Keller, T., Popović, D.B.: A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. NeuroEng. Rehabil. 9, 66 (2012)

    Google Scholar 

  • Mannsfeld, S.C., Tee, B.C., Stoltenberg, R.M., Chen, C.V., Barman, S., Muir, B.V., Sokolov, A.N., Reese, C., Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Google Scholar 

  • Marette, A., Poulin, A., Besse, N., Rosset, S., Briand, D., Shea, H.: Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 29 (2017)

  • Martin, A.K., Meinzer, M., Lindenberg, R., Sieg, M.M., Nachtigall, L., Flöel, A.: Effects of transcranial direct current stimulation on neural networks structure in young and older adults. J. Cognit. Neurosci. 29, 1817–1828 (2017)

    Google Scholar 

  • Martinez, R.V., Fish, C.R., Chen, X., Whitesides, G.M.: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Func. Mater. 22, 1376–1384 (2012)

    Google Scholar 

  • Mavadati, S.: Spontaneous facial behavior computing in human machine interaction with applications in autism treatment. Dissertations & Theses—Gradworks (2015)

  • Mccall, J.G., Kim, T., Shin, G., Huang, X., Jung, Y.H., Alhasani, R., Omenetto, F.G., Bruchas, M.R., Rogers, J.A.: Fabrication of flexible, multimodal light-emitting devices for wireless optogenetics. Nat. Protoc. 8, 2413–2428 (2013)

    Google Scholar 

  • Melo, P.L., Silva, M.T., Martins, J.M., Newman, D.J.: Technical developments of functional electrical stimulation to correct drop foot: sensing, actuation and control strategies. Clin. Biomech. 30, 101–113 (2015)

    Google Scholar 

  • Menguc, Y., Park, Y.L., Martinez-Villalpando, E., Aubin, P., Zisook, M., Stirling, L., Wood, R.J., Walsh, C.J.: Soft wearable motion sensing suit for lower limb biomechanics measurements, pp. 5309–5316 (2013)

  • Menguc, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J.: Wearable soft sensing suit for human gait measurement. Int. J. Robot. Res. 33, 1748–1764 (2014)

    Google Scholar 

  • Mishra, S., Norton, J.J., Lee, Y., Lee, D.S., Agee, N., Chen, Y., Chun, Y., Yeo, W.H.: Soft, conformal bioelectronics for a wireless human-wheelchair interface. Biosens. Bioelectron. 91, 796–803 (2017)

    Google Scholar 

  • Nightingale, J.M., Todd, R.W.: An adaptively-controlled prosthetic hand. ARCHIVE Engineering in Medicine 1971–1988 (1–17), vol. 1, pp. 3–6 (1971)

  • Norton, J.J., Lee, D.S., Lee, J.W., Lee, W., Kwon, O., Won, P., Jung, S.Y., Cheng, H., Jeong, J.W., Akce, A.: Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. U.S.A. 112, 3920 (2015)

    Google Scholar 

  • Pang, C., Lee, G.Y., Kim, T., Sang, M.K., Hong, N.K., Ahn, S.H., Suh, K.Y.: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012)

    Google Scholar 

  • Pang, Y., Li, J., Zhou, T., Yang, Z., Luo, J., Zhang, L., Dong, G., Zhang, C., Wang, Z.L.: Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy 31, 533–540 (2017)

    Google Scholar 

  • Park, J., Na, Y., Gu, G., Kim, J.: Flexible insole ground reaction force measurement shoes for jumping and running. In: IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 1062–1067 (2016)

  • Park, S.I., Brenner, D.S., Shin, G., Morgan, C.D., Copits, B.A., Chung, H.U., Pullen, M.Y., Noh, K.N., Davidson, S., Oh, S.J.: Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280 (2015)

    Google Scholar 

  • Polygerinos, P., Correll, N., Morin, S.A., Mosadegh, B., Onal, C.D., Petersen, K., Cianchetti, M., Tolley, M.T., Shepherd, R.F.: Soft robotics: review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Advanced Engineering Mater. 19 (2017)

  • Pradel, K.C., Wu, W., Ding, Y., Wang, Z.L.: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. Nano Lett. 14, 6897–6905 (2014)

    Google Scholar 

  • Qi, Y., Soh, C.B., Gunawan, E., Low, K.S., Maskooki, A.: A novel approach to joint flexion/extension angles measurement based on wearable UWB radios. IEEE J. Biomed. Health Inform. 18, 300 (2014)

    Google Scholar 

  • Qian, X., Su, M., Li, F., Song, Y.: Research progress in flexible wearable electronic sensors. Acta Chim. Sinica 74, 565 (2016)

    Google Scholar 

  • Rajabi, A.H., Jaffe, M., Arinzeh, T.L.: Piezoelectric materials for tissue regeneration: a review. Acta Biomater. 24, 12–23 (2015)

    Google Scholar 

  • Ranasinghe, N., Do, Y.L.: Digital lollipop: studying electrical stimulation on the human tongue to simulate taste sensations. Acm Trans. Multimedia Comput. Commun. Appl. 13, 5 (2016)

    Google Scholar 

  • Rogers, J.A.: Materials science. A clear advance in soft actuators. Science 341, 968–969 (2013)

    Google Scholar 

  • Rogers, J.A., Someya, T., Huang, Y.: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Google Scholar 

  • Rothschild, R.M.: Neuroengineering tools/applications for bidirectional interfaces, brain–computer interfaces, and neuroprosthetic implants—a review of recent progress. 3:112 (2010)

  • San Juan, J.G., Gunderson, S.R., Kane-Ronning, K., Suprak, D.N.: Scapular kinematic is altered after electromyography biofeedback training. J. Biomech. 49, 1881–1886 (2016)

    Google Scholar 

  • Saproo, S., Shih, V., Jangraw, D.C., Sajda, P.: Neural mechanisms underlying catastrophic failure in human-machine interaction during aerial navigation. J. Neural Eng. 13, 066005 (2016)

    Google Scholar 

  • Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. In: International Conference on Rehabilitation Robotics, pp. 895–900 (2017)

  • Schenk, M.: Family history and smoking predict pancreatic cancer risk. Clin. Rehabil. 27, 579–590 (2013)

    Google Scholar 

  • Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009a)

    Google Scholar 

  • Sekitani, T., Yokota, T., Zschieschang, U., Klauk, H., Bauer, S., Takeuchi, K., Takamiya, M., Sakurai, T., Someya, T.: Organic nonvolatile memory transistors for flexible sensor arrays. Science 326, 1516–1519 (2009b)

    Google Scholar 

  • Shikida, M., Asano, K.: A flexible transparent touch panel based on ionic liquid channel. IEEE Sens. J. 13, 3490–3495 (2013)

    Google Scholar 

  • Shin, G., Gomez, A.M., Al-Hasani, R., Jeong, Y.R., Kim, J., Xie, Z., Banks, A., Lee, S.M., Han, S.Y., Yoo, C.J.: Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509 (2017)

    Google Scholar 

  • Shriver, Stefanie, Toth, Arthur, Zhu, Xiaojin, Rudnicky, Alex, Rosenfeld, and Roni, “A unified design for human-machine voice interaction,” pp. 247–248, 2001

  • Sigari, M.-H., Pourshahabi, M.-R., Soryani, M., Fathy, M.: A review on driver face monitoring systems for fatigue and distraction detection. Int. J. Adv. Sci. Technol. 64, 73–100 (2014)

    Google Scholar 

  • Somarajan, S., Cassilly, S., Obioha, C., Bradshaw, L.A., Richards, W.O.: Noninvasive biomagnetic detection of isolated ischemic bowel segments. IEEE Trans. Biomed. Eng. 60, 1677–1684 (2013)

    Google Scholar 

  • Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., Sakurai, T.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U.S.A. 101, 9966–9970 (2004)

    Google Scholar 

  • Son, H., Kim, C.: Multiimaging sensor data fusion-based enhancement for 3D workspace representation for remote machine operation. J. Constr. Eng. Manag. 139, 434–444 (2013)

    Google Scholar 

  • Song, J., Jiang, H., Liu, Z.J., Khang, D.Y., Huang, Y., Rogers, J.A., Lu, C., Koh, C.G.: Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Struct. 45, 3107–3121 (2008)

    MATH  Google Scholar 

  • Su, Y., Ping, X., Yu, K.J., Lee,J.W., Fan, J.A., Wang, B., Li, M., Li, R., Harburg, D.V., Huang, Y.: In-plane deformation mechanics for highly stretchable electronics. Adv. Mater. 29 (2017)

  • Su, Y., Liu, Z., Kim, S., Wu, J., Huang, Y., Rogers, J.A.: Mechanics of stretchable electronics with high fill factors. Int. J. Solids Struct. 49, 3416–3421 (2012)

    Google Scholar 

  • Su, Y.W., Wang, S.D., Huang, Y.A., Luan, H.W., Dong, W.T., Fan, J.A., Yang, Q.L., Rogers, J.A., Huang, Y.G.: Elasticity of fractal inspired interconnects. Small 11, 367–373 (2015)

    Google Scholar 

  • Sun, J.Y., Keplinger, C., Whitesides, G.M., Suo, Z.: Ionic skin. Adv. Mater. 26, 7608–7614 (2015)

    Google Scholar 

  • Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A.: Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644 (2004)

    Google Scholar 

  • Takamiya, M., Sekitani, T., Kato, Y., Kawaguchi, H., Someya, T., Sakurai, T.: Low power and flexible braille sheet display with organic FET’s and plastic actuators. In: IEEE International Conference on Integrated Circuit Design and Technology, pp 1–4 (2006)

  • Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S., Javey, A.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010a)

    Google Scholar 

  • Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S., Javey, A.: Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 9, 821–826 (2010b)

    Google Scholar 

  • Tamezduque, J., Cobianugalde, R., Kilicarslan, A., Venkatakrishnan, A., Soto, R., Contrerasvidal, J.L.: Real-time strap pressure sensor system for powered exoskeletons. Sensors 15, 4550–4563 (2015)

    Google Scholar 

  • Tee, B.C., Wang, C., Allen, R., Bao, Z.: An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012a)

    Google Scholar 

  • Tee, C.K., Wang, C., Allen, R., Bao, Z.: An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825–832 (2012b)

    Google Scholar 

  • Tee, B.C., Chortos, A., Berndt, A., Nguyen, A.K., Tom, A., Mcguire, A., Lin, Z.C., Tien, K., Bae, W.G., Wang, H.: A skin-inspired organic digital mechanoreceptor. Science 350, 313 (2015)

    Google Scholar 

  • Trkov, M., Yi, J., Liu, T., Li, K.: Shoe-floor interactions in human walking with slips: modeling and experiments. J. Biomech. Eng. (Epub 2017 Oct 2017) (2017)

  • Tzafestas, S.G.: Fuzzy systems and fuzzy expert control: an overview. Knowl. Eng. Rev. 9, 229–268 (1994)

    Google Scholar 

  • Uchida, S., Mori, A., Kurazume, R., Rin-Ichiro, T., Hasegawa, T., Sakoe, H.: Early recognition and prediction of gestures for proactive human–machine interface. Technical Rep. Ieice Prmu 104, 7–12 (2004)

    Google Scholar 

  • Vieira, L.A., Malta, R.D., Sabino, G.S.: Biofeedback eletromiográfico (biofeedback/EMG) no pós-operatório de joelho. Fisioter Mov, 20 (2007)

  • Wang, S.D., Li, M., Wu, J., Kim, D.H., Lu, N.S., Su, Y.W., Kang, Z., Huang, Y.G., Rogers, J.A.: Mechanics of epidermal electronics. J. Appl. Mech. Trans. Asme. 79 (2012)

  • Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., Wang, Z.L.: Recent progress in electronic skin, Adv. Sci. 2 (2015)

  • Wang, B., Li, Z., Ye, W., Xie, Q.: Development of human-machine interface for teleoperation of a mobile manipulator. Int. J. Control Autom. Syst. 10, 1225–1231 (2012)

    Google Scholar 

  • Wang, X., Dong, L., Zhang, H., Yu, R., Pan, C., Wang, Z.L.: Recent progress in electronic skin. Adv. Sci. 2, 1500169 (2015a)

    Google Scholar 

  • Wang, X., Zhang, H., Yu, R., Dong, L., Peng, D., Zhang, A., Zhang, Y., Liu, H., Pan, C., Wang, Z.L.: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27, 2324–2331 (2015b)

    Google Scholar 

  • Wang, X., Zhang, H., Dong, L., Han, X., Du, W., Zhai, J., Pan, C., Wang, Z.L.: Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv. Mater. 28, 2896 (2016)

    Google Scholar 

  • Watanabe, M., Yamamoto, Y., Nakakoji, K., Koike, Y.: Multi-DOF motion controller by EMG based human-machine interface using operator’s joint torque and stiffness. Ieice Technical Rep. Neurocomput. 106, 91–96 (2006)

    Google Scholar 

  • Wei, S., Wang, T., Guoying, G.U.: Design of a soft pneumatic robotic gripper based on fiber-reinforced actuator. J. Mech. Eng. (2017)

  • Wentao, D., Chen, Z., Wei, H., Lin, X., Yong’an, H.: Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry. J. Semicond. 39, 014001 (2018)

    Google Scholar 

  • Westerveld, A.J., Schouten, A.C., Veltink, P.H., van Kooij, H.: Selectivity and resolution of surface electrical stimulation for grasp and release. IEEE Trans. Neural Syst. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 20, 94–101 (2012)

    Google Scholar 

  • Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., Mcfarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. A Publ. IEEE Eng. Med. Biol. Soc. 8, 164–173 (2000)

    Google Scholar 

  • Wu, W., Wang, Z.L.: Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016)

    Google Scholar 

  • Wu, W., Wen, X., Wang, Z.L.: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013)

    Google Scholar 

  • Xiao, X., Yuan, L., Zhong, J., Ding, T., Liu, Y., Cai, Z., Rong, Y., Han, H., Zhou, J., Wang, Z.L.: High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 23, 5440–5444 (2011)

    Google Scholar 

  • Xu, S., Zhang, Y., Jia, L., Mathewson, K.E., Jang, K.-I., Kim, J., Fu, H., Huang, X., Chava, P., Wang, R.: Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014)

    Google Scholar 

  • Xu, L., Gutbrod, S.R., Ma, Y., Petrossians, A., Liu, Y., Webb, R.C., Fan, J.A., Yang, Z., Xu, R., Whalen, J.J.: Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv. Mater. 27, 1731–1737 (2015)

    Google Scholar 

  • Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W.-H., Park II, S., Boyce, B., Kim, H., Yu, J., Lai, H.-Y., Jung, S., Zhou, Y., Kim, J., Cho, S., Huang, Y., Bretl, T., Rogers, J.A.: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016a)

    Google Scholar 

  • Xu, B., Akhtar, A., Liu, Y., Chen, H., Yeo, W.H., Park, S.I., Boyce, B., Kim, H., Yu, J., Lai, H.Y., Jung, S., Zhou, Y., Kim, J., Cho, S., Huang, Y., Bretl, T., Rogers, J.A.: An epidermal stimulation and sensing platform for sensorimotor prosthetic control, management of lower back exertion, and electrical muscle activation. Adv. Mater. 28, 4462–4471 (2016b)

    Google Scholar 

  • Xue, Y., Ju, Z., Xiang, K., Chen, J., Liu, H.: Multimodal human hand motion sensing and analysis—a review. IEEE Transactions on Cognitive & Developmental Syst. 1–1 (2018)

  • Yabuta, T., Bescher, E.P., Mackenzie, J.D., Tsuru, K., Hayakawa, S., Osaka, A.: Synthesis of PDMS-based porous materials for biomedical applications. J. Sol–Gel. Sci. Technol. 26, 1219–1222 (2003)

    Google Scholar 

  • Yi, J., Ueda, J., Zhu, X.: Introduction to the focused section on intelligent robotics for rehabilitation and human assistance. Int. J. Intell. Robot. Appl. 1, 3–5 (2017)

    Google Scholar 

  • Ying, M., Bonifas, A.P., Lu, N., Su, Y., Li, R., Cheng, H., Ameen, A., Huang, Y., Rogers, J.A.: Silicon nanomembranes for fingertip electronics. Nanotechnology. 23, 344004 (2012)

    Google Scholar 

  • Yokus, M.A., Jur, J.S.: Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans. Bio-Med. Eng. 63, 423 (2016)

    Google Scholar 

  • Young, D.J., Zurcher, M.A., Semaan, M., Megerian, C.A., Wen, H.K.: MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans. Biomed. Eng. 59, 3283–3292 (2012)

    Google Scholar 

  • Yu, Y., Nguyen, T., Tathireddy, P., Young, D.J., Roundy, S.: Wireless hydrogel-based glucose sensor for future implantable applications. In: SENSORS, IEEE, pp. 1–3 (2016)

  • Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Rob. 31, 1089–1100 (2015)

    Google Scholar 

  • Zhang, X., Jia, Y.: A linear discriminant analysis framework based on random subspace for face recognition. Pattern Recogn. 40, 2585–2591 (2007)

    MATH  Google Scholar 

  • Zhang, Y., Geng, X., Wang, H.: A system for relieving mental fatigue based on light and sound stimulation. In: Advanced Engineering Forum, pp. 228–233 (2012)

  • Zhang, Y., Fu, H., Su, Y., Xu, S., Cheng, H., Fan, J.A., Hwang, K.-C., Rogers, J.A., Huang, Y.: Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61, 7816–7827 (2013a)

    Google Scholar 

  • Zhang, Y., Xu, S., Fu, H., Lee, J., Su, J., Hwang, K.C., Rogers, J.A., Huang, Y.: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter 9, 8062–8070 (2013b)

    Google Scholar 

  • Zhao, S., Li, J., Cao, D., Zhang, G., Li, J., Li, K., Yang, Y., Wang, W., Jin, Y., Sun, R., Wong, C.P.: Recent advancements in flexible and stretchable electrodes for electromechanical sensors: strategies, materials, and features. ACS Appl. Mater. Interfaces. 9, 12147–12164 (2017)

    Google Scholar 

  • Zheng, E., Manca, S., Yan, T., Parri, A., Vitiello, N., Wang, Q.: Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators. IEEE Trans. Biomed. Eng. 64, 2419–2430 (2017)

    Google Scholar 

  • Zhou, Y., Wang, Y., Liu, R., Xiao, L., Zhang, Q., Huang, Y.: Multichannel noninvasive human–machine interface via stretchable µ m thick sEMG patches for robot manipulation. J. Micromech. Microeng. 28, 014005 (2018)

    Google Scholar 

  • Zou, Y., Wan, H., Zhang, X., Da, H., Wang, P.: Electronic nose and electronic tongue, nondestructive evaluation of food quality. Springer, Berlin, 73–100 (2015)

Download references

Acknowledgement

The authors would like to acknowledge supports from the National Natural Science Foundation of China (51635007, 91748113, 51575412), Program for HUST Academic Frontier Youth Team, Special Project of Technology Innovation of Hubei Province. (2017AAA002), and State Key Lab of Digital Manufacturing Equipment & Technology, China (DMETKF2017003). The authors would like to thank Flexible Electronics Manufacturing Laboratory in Comprehensive Experiment Center for Advanced Manufacturing and Equipment Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Zhang or YongAn Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wang, Y., Zhou, Y. et al. Soft human–machine interfaces: design, sensing and stimulation. Int J Intell Robot Appl 2, 313–338 (2018). https://doi.org/10.1007/s41315-018-0060-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-018-0060-z

Keywords

Navigation