Skip to main content
Log in

Patterns of Spatial Variation of Meiofauna in Sandy Beaches of Northwestern Mexico with Contrasting Levels of Disturbance

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

Despite the high abundance and diversity of meiofauna in sandy beach habitats, their patterns of spatial distribution have not been well characterized. This study analyzed the horizontal distribution of the intertidal meiofaunal community in sandy beaches of Todos Santos Bay (TSB), northwestern Mexico, and related it with levels of disturbance. Ten sandy beaches were sampled for meiofauna and sediment along the western coast of TSB at lower, mid, and upper levels of the intertidal. The meiofaunal community included five major groups viz. Amphipoda, Copepoda, Nematoda, Oligochaeta, and Polychaeta, and was mostly dominated by nematodes, regardless of the intertidal level. Meiofauna and nematode abundances differed significantly across the beach slope, increasing towards the upper level; this pattern varied along the shoreline, changing particularly where the beach was heavily modified due to costal development. Multivariate analyses significantly differentiated lower, mid, and upper levels of the intertidal, mostly due to differences in copepod abundance. Sediment grain size significantly differed among intertidal levels (i.e., smaller in the upper intertidal) and was negatively correlated with meiofaunal abundance. Moreover, meiofaunal abundance was negatively impacted by the degree of disturbance as highly urbanized/disturbed beaches of TSB showed lower meiofaunal abundance. As costal development continues to increase, findings from ecological surveys should play a pivotal role in characterizing and monitoring the health status of sandy beaches to aid in their management and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkemade R, Wielemaker A, Hemminga MA (1992) Stimulation of decomposition of Spartina anglica leaves by the bacterivorous marine nematode Diplolaimelloides bruciei (Monhysteridae). J Exp Mar Bio Ecol 159:267–278

    Article  Google Scholar 

  • Alves AS, Adão H, Ferrero TJ, Marques JC, Costa MJ, Patrício J (2013) Benthic meiofauna as indicator of ecological changes in estuarine ecosystems: the use of nematodes in ecological quality assessment. Ecol Indic 24:462–475

    Article  Google Scholar 

  • Ansari ZA, Ingole BS, Parulekar AH (1984) Macrofauna and meiofauna of two sandy beaches at Mombasa, Kenya. Indian J Mar Sci 13:187–189

    Google Scholar 

  • Austen MC (2004) Natural nematode communities are useful tools to address ecological and applied questions. In: Cook RC, Hunt DJ (eds) Proceedings of the fourth international congress of nematology. Brill, Leiden, pp 1–17

    Google Scholar 

  • Brown AC, McLachlan A (2002) Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ Conserv 29:62–77

    Article  Google Scholar 

  • Carver RE (1971) Procedures in Sedimentary petrology. Wiley-Interscience, New York

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (1994) Similarity-based testing for community pattern: the two-way layout with no replication. Mar Biol 118:167–176

    Article  Google Scholar 

  • Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Austral Ecol 24:327–343

    Article  Google Scholar 

  • Dahl E (1952) Aspects of the ecology and zonation of the fauna on sandy beaches. Oikos 4:1–27

    Article  Google Scholar 

  • Davenport J, Davenport JL (2006) The impact of tourism and personal leisure transport on coastal environments: a review. Estuar Coast Mar Sci 67:280–292

    Article  Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20

    Article  Google Scholar 

  • Defeo O, McLachlan A (2013) Global patterns in sandy beach macrofauna: species richness, abundance, biomass and body size. Geomorphology 199:106–114

    Article  Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beach ecosystems: A review. Estuar Coast Mar Sci 81:1–12

    Article  Google Scholar 

  • Dexter DM (1992) Sandy beach community structure: the role of exposure and latitude. J Biogeogr 19:59–66

    Article  Google Scholar 

  • Díaz-Castañeda V, de León-González JA, Solana-Arellano E (2014) Biodiversity of polychaete assemblages in a highly productive lagoon located in Baja California Sur, México. Proc Biol Soc Wash 127:406–422

    Article  Google Scholar 

  • Díaz-Castañeda V, Harris LH (2004) Biodiversity and structure of the polychaete fauna from soft bottoms of Bahia Todos Santos, Baja California, Mexico. Deep-Sea Res PT II 51:827–847

    Article  Google Scholar 

  • Espinosa-Carreón L, Gaxiola-Castro G, Robles-Pacheco JM, Nájera-Martínez S (2001) Temparature, salinity, nutrients and chlorophyll a in coastal waters of sourthern California Bight. Cienc Mar 27:397–422

    Article  Google Scholar 

  • Félix G, Marenzi RC, Polette M, Netto SA (2016) Landscape visual quality and meiofauna biodiversity on sandy beaches. Environ Manag 58:682–693

    Article  Google Scholar 

  • Fricke AH, Hennig HK, Orren MJ (1981) Relationship between oil pollution and psammolittoral meiofauna density of two South African beaches. Mar Environ Res 5:59–77

    Article  Google Scholar 

  • Gheskiere T, Hoste E, Vanaverbeke J, Vincx M, Degraer S (2004) Horizontal zonation patterns and feeding structure of marine nematode assemblages on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). J Sea Res 52:211–226

    Article  Google Scholar 

  • Gheskiere T, Vincx M, Urban-Malinga B, Rossano C, Scapini F, Degraer S (2005a) Nematodes from wave-dominated sandy beaches: diversity, zonation patterns and testing of the isocommunities concept. Estuar Coast Mar Sci 62:365–375

    Article  Google Scholar 

  • Gheskiere T, Vincx M, Weslawski JM, Scapini F, Degraer S (2005b) Meiofauna as descriptor of tourism-induced changes at sandy beaches. Mar Environ Res 60:245–265

    Article  Google Scholar 

  • Giere O, Pfannkuche O (1982) Biology and ecology of marine Oligochaeta, a review. Oceanogr Mar Biol 20:173–308

    Google Scholar 

  • Gingold R, Mundo-Ocampo M, Holovachov O, Rocha-Olivares A (2010) The role of habitat heterogeneity in structuring the community of intertidal free-living marine nematodes. Mar Biol 157:1741–1753

    Article  Google Scholar 

  • Harriague AC, Misic C, Valentini I, Polidori E, Albertelli G, Pusceddu A (2013) Meio- and macrofauna communities in three sandy beaches of the northern Adriatic Sea protected by artificial reefs. Chem Ecol 29:181–195

    Article  Google Scholar 

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol 23:399–489

    Google Scholar 

  • Hooge MD (1999) Abundance and horizontal distribution of meiofauna on a northern California beach. Pac Sci 53:305–315

    Google Scholar 

  • Hourston M, Warwick RM, Valesini FJ, Potter IC (2005) To what extent are the characteristics of nematode assemblages in nearshore sediments on the west Australian coast related to habitat type, season and zone? Estuar Coast Mar Sci 64:601–612

    Article  Google Scholar 

  • Houston JR (2008) The economic value of beaches: a 2008 update. Shore Beach 76:22–26

    Google Scholar 

  • INEGI (2015) Estimación de la población a mitad de año por entidad federativa y municipio 2015, Mexico

  • Jiménez-Pérez LC, Molina-Peralta F, Núñez-Fernández E (1992) Effects of waste waters on benthic macrofauna of sandy beaches in Todos Santos Bay. Cienc Mar 18:35–54

    Article  Google Scholar 

  • Joint IR, Gee JM, Warwick RM (1982) Determination of fine-scale vertical distribution of microbes and meiofauna in an intertidal sediment. Mar Biol 72:157–164

    Article  Google Scholar 

  • Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica Ludox-TM. Mar Biol 42:143–148

    Article  Google Scholar 

  • Kotwicki L, De Troch M, Urban-Malinga B, Gheskiere T, Wesawski JM (2005) Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgoland Mar Res 59:255–264

    Article  Google Scholar 

  • Kotwicki L, Deidun A, Grzelak K, Gianni F (2014) A preliminary comparative assessment of the meiofaunal communities of Maltese pocket sandy beaches. Estuar Coast Mar Sci 150:111–119

    Article  Google Scholar 

  • Kuk-Dzul JG, Díaz-Castañeda V (2016) The relationship between mollusks and oxygen concentrations in Todos Santos Bay, Baja California, Mexico. J Mar Biol. doi:10.1155/2016/5757198

  • Ladah LB, Tapia FJ, Pineda J, López M (2005) Spatially heterogeneous, synchronous settlement of Chthamalus spp. larvae in northern Baja California. Mar Ecol Prog Ser 302:177–185

    Article  Google Scholar 

  • Lercari D, Defeo O (2003) Variation of a sandy beach macrobenthic community along a human-induced environmental gradient. Estuar Coast Mar Sci 58:17–24

    Article  Google Scholar 

  • Levin LA, Ekau W, Gooday AJ, Jorissen F, Middelburg JJ, Naqvi SWA, Neira C, Rabalais NN, Zhang J (2009) Effects of natural and human-induced hypoxia on coastal benthos. Biogeosciences 6:2063–2098

    Article  Google Scholar 

  • Maria TF, Vanaverbeke J, Gingold R, Esteves AM, Vanreusel A (2013) Tidal exposure or microhabitats: what determines sandy-beach nematode zonation? a case study of a macrotidal ridge-and-runnel sandy beach in Belgium. Mar Ecol 34:207–217

    Article  Google Scholar 

  • Maria TF, Vanaverbeke J, Vanreusel A, Esteves AM (2016) Sandy beaches: state of the art of nematode ecology. An Acad Bras Cienc 88:1635–1653

    Article  Google Scholar 

  • Mateos E, Marinone SG, Parés-Sierra A (2009) Towards the numerical simulation of the summer circulation in Todos Santos Bay, Ensenada, B.C. Mexico. Ocean Model 27:107–112

    Article  Google Scholar 

  • McLachlan A (1980) Intertidal zonation of macrofauna and stratification of meiofauna on high energy sandy beaches in the Eastern Cape, South Africa. T Roy Soc S Afr 44:213–223

    Article  Google Scholar 

  • McLachlan A, Brown AC (2006) The ecology of sandy shores, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Moffett MD, McLachlan A, Winter PED, De Ruyck AMC (1998) Impact of trampling on sandy beach macrofauna. J Coastal Conserv 4:87–90

    Article  Google Scholar 

  • Moreno M, Ferrero TJ, Granelli V, Marin V, Albertelli G, Fabiano M (2006) Across shore variability and trophodynamic features of meiofauna in a microtidal beach of the NW Mediterranean. Estuar Coast Mar Sci 66:357–367

    Article  Google Scholar 

  • Muñoz-Barbosa A, Gutiérrez-Galindo EA, Daesslé LW, Orozco-Borbón MV, Segovia-Zavala JA (2012) Relationship between metal enrichments and a biological adverse effects index in sediments from Todos Santos Bay, northwest coast of Baja California, México. Mar Pollut Bull 64:405–409

    Article  Google Scholar 

  • Nicholas WL, Hodda M (1999) The free-living nematodes of a temperate, high energy, sandy beach: faunal composition and variation over space and time. Hydrobiologia 394:113–127

    Article  Google Scholar 

  • Peña-Manjarrez JL, Helenes J, Gaxiola-Castro G, Orellana-Cepeda E (2005) Dinoflagellate cysts and bloom events at Todos Santos Bay, Baja California, México, 1999-2000. Cont Shelf Res 25:1375–1393

    Article  Google Scholar 

  • Peynador C, Méndez-Sánchez F (2010) Managing coastal erosion: A management proposal for a littoral cell in Todos Santos Bay, Ensenada, Baja California, Mexico. Ocean Coast Manage 53:350–357

    Article  Google Scholar 

  • Raffaelli DG, Mason CF (1981) Pollution monitoring with meiofauna, using the ratio of nematodes to copepods. Mar Pollut Bull 12:158–163

    Article  Google Scholar 

  • Rodríguez JG (2004) Community structure of intertidal meiofauna along a gradient of morphodynamic states on an exposed North Sea beach. Sarsia 89:22–32

    Article  Google Scholar 

  • Rodríguez JG, Lastra M, López J (2003) Meiofauna distribution along a gradient of sandy beaches in northern Spain. Estuar Coast Mar Sci 58:63–69

    Article  Google Scholar 

  • Rodríguez JG, Lopez J, Jaramillo E (2001) Community structure of the intertidal meiofauna along a gradient of morphodynamic sandy beach types in southern Chile. Rev Chil Hist Nat 74:885–897

    Article  Google Scholar 

  • Rodríguez-Villanueva V, Martínez-Lara R, Macías Zamora V (2003) Polychaete community structure of the northwestern coast of Mexico: patterns of abundance and distribution. Hydrobiologia 496:385–399

    Article  Google Scholar 

  • Salvat B (1964) Les conditions hydrodynamiques interstitielles des sédiments meubles intertidaux et la répartition verticale de la faune endogée. C R Acad Sci Paris 259:1576–1579

    Google Scholar 

  • Schlacher TA, Lucrezi S (2010) Compression of home ranges in ghost crabs on sandy beaches impacted by vehicle traffic. Mar Biol 157:2467–2474

    Article  Google Scholar 

  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar Ecol 29:70–90

    Article  Google Scholar 

  • Schlacher TA, Weston MA, Schoeman DS, Olds AD, Huijbers CM, Connolly RM (2015) Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar Coast Mar Sci 157:1–6

    Article  Google Scholar 

  • Schratzberger M, Gee JM, Rees HL, Boyd SE, Wall CM (2000) The structure and taxonomic composition of sublittoral meiofauna assemblages as an indicator of the status of marine environments. J Mar Biol Assoc UK 80:969–980

    Article  Google Scholar 

  • Sectur (2002) Agenda 21 para el Turismo Mexicano. Un marco de acción para el desarrollo sustentable de la actividad turística, Mexico

    Google Scholar 

  • Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: The principles and practices of statistics in biological research. WH Freeman and Company, New York

    Google Scholar 

  • Somerfield P, Warwick R (1996) Meiofauna in marine pollution monitoring programmes. A laboratory manual. Directorate of Fisheries Research (MAFF), Lowestoft

  • StatSoft (2005) STATISTICA (data analysis software system)

  • Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304

    Article  Google Scholar 

  • Suguio K (1973) Introdução à sedimentologia. Blücher, São Paulo

    Google Scholar 

  • Walker SJ, Schlacher TA (2011) Impact of a pulse human disturbance experiment on macrofaunal assemblages on an Australian sandy beach. J Coastal Res 27:184–192

    Article  Google Scholar 

  • Walters K (1988) Diel vertical migration of sediment-associated meiofauna in subtropical sand and seagrass habitats. J Exp Mar Bio Ecol 117:169–186

    Article  Google Scholar 

  • Warwick RM, Robinson J (2000) Sibling species in the marine pollution indicator genus Pontonema Leidy (Nematoda: Oncholaimidae), with a description of P. mediterranea sp. nov. J Nat Hist 34:641–662

    Article  Google Scholar 

  • Zeppilli D, Sarrazin J, Leduc D et al (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505–535

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mare Britanicum for funding this work through Lorax Consultores. We thank J. Sandoval-Castillo for help during collecting and processing of samples and G. Rendón-Márquez (Geology Department at CICESE) for assistance with sediment analyses. The authors also acknowledge the insightful comments and suggestions from three anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axayácatl Rocha-Olivares.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Table 1

(DOCX 19 kb)

Table 2

(DOCX 16 kb)

Figure 1

(DOCX 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, T.J., Gingold, R., Villegas, A.D.M. et al. Patterns of Spatial Variation of Meiofauna in Sandy Beaches of Northwestern Mexico with Contrasting Levels of Disturbance. Thalassas 34, 53–63 (2018). https://doi.org/10.1007/s41208-017-0038-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-017-0038-x

Keywords

Navigation