Skip to main content

Advertisement

Log in

Spatio-Temporal Pattern of Phytoplankton Assemblages in the Southern Part of the Caspian Sea

  • Published:
Thalassas: An International Journal of Marine Sciences Aims and scope Submit manuscript

Abstract

Spatial and temporal variations in physico-chemical properties of coastal waters play a major role in determining the density, diversity and occurrence of phytoplankton. The present study is conducted to assess spatio-temporal pattern of phytoplankton assemblage in the southern parts of the Caspian Sea (CS) which in turn can serve as an ecological health indicator in this region. Among 64 identified phytoplankton species, diatoms (37 species and 66.2%) and Dinophyceae (11 species and 18.2%) were dominant. Non-metric multidimensional scaling (NMDS) were employed to reveal Spatial and temporal distributions of phytoplankton assemblages. Four groups were established using hierarchical clustering based on species richness similarities which were absolutely represented the four seasons. The summer and spring samples were highly separated from the winter and autumn samples. The Linear Discriminant Analysis (LDA) model showed that temporal patterns of phytoplankton assemblages were mostly explained by chemical factors (silicate, phosphate, and nitrite) and temperature. In conclusion, results of this study suggested that spatio-temporal patterns of phytoplankton in the southern part of the CS are closely associated with seasonal variations in river flow and temperature. The temporal patterns are apparently dominant in this area and water nutrients are mainly responsible for seasonal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agawin NS, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45(3):591–600

    Article  Google Scholar 

  • Aktan Y (2011) Large-scale patterns in summer surface water phytoplankton (except picophytoplankton) in the Eastern Mediterranean. Estuar Coast Shelf Sci 91(4):551–558

    Article  Google Scholar 

  • Badylak S, Phlips EJ (2004) Spatial and temporal patterns of phytoplankton composition in subtropical coastal lagoon, the Indian River lagoon, Florida, USA. J Plankton Res 26(10):1229–1247

    Article  Google Scholar 

  • Bagheri S, Mansor M, Turkoglu M, Makaremi M, Wan Omar WO, Negarestan H (2012a) Phytoplankton species composition and abundance in the southwestern CS. Ekoloji 21(83):32–43

    Article  Google Scholar 

  • Bagheri S, Mansor M, Turkoglu M, Makaremi M, Babaei H (2012b) Temporal distribution of phytoplankton in the south-western CS during 2009–2010: a comparison with previous surveys. J Mar Biol Assoc U K 92(06):1243–1255

    Article  Google Scholar 

  • Bagheri S, Turkoglu M, Abedini A (2014) Phytoplankton and nutrient variations in the Iranian waters of the CS (Guilan region) during 2003-2004. Turk J Fish Aqua Sci 14(1):231–245

    Google Scholar 

  • Barnes DK, Fuentes V, Clarke A, Schloss IR, Wallace MI (2006) Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Res PT II: Top Stud Oceanogr 53(8):853–865

    Article  Google Scholar 

  • Berner EK, Berner RA (2012) Global environment: water, air, and geochemical cycles. Princeton, Princeton University Press

    Google Scholar 

  • Bilgrami KS, Saha LC (2002) A textbook of algae. CBS publication, new Dehli. Biology of the Indian Ocean. Springer-Verlag, berlin

  • Billen G, Garnier J, Ficht A, Cun C (2001) Modeling the response of water quality in the seine river estuary to human activity in its watershed over the last 50years. Estuaries 24:977–993

    Article  Google Scholar 

  • Bresnan E, Kraberg A, Fraser S, Brown L, Hughes S, Wiltshire KH (2015) Diversity and seasonality of Pseudo-nitzschia (Peragallo) at two North Sea time-series monitoring sites. Helgoland Mar Res 69(2):193–204

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA (2008) Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol Model 211(3):411–423

    Article  Google Scholar 

  • Carmelo RT (1997) Identifying marine phytoplankton. Academic Press, San Diego. Paperback

    Google Scholar 

  • Caroppo C, Turicchia S, Margheri MC (2006) Phytoplankton assemblages in coastal waters of the northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria. J Mar Biol Assoc U K 86(05):927–937

    Article  Google Scholar 

  • Cloern JE (1999) The relative importance of light and nutrient limitation of phytoplankton growth: a simple index of coastal ecosystem sensitivity to nutrient enrichment. Aquat Ecol 33(1):3–15

    Article  Google Scholar 

  • Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253

    Article  Google Scholar 

  • Dauchez S, Legendre L, Fortier L, Levasseur M (1996) Nitrate uptake by size-fractionated phytoplankton on the Scotian shelf (Northwest Atlantic): spatial and temporal variability. J Plankton Res 18:577–595

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Edwards M, Johns DG, Leterme SC, Svendsen E, Richardson AJ (2006) Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol Oceanogr 51(2):820–829

    Article  Google Scholar 

  • Eker E, Kideys AE (2003) Distribution of phytoplankton in the southern Black Sea in summer 1996, spring and autumn 1998. J Mar Sys 39:203–211

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70(4):1063–1085

    Google Scholar 

  • Falkowski PG, Wilson C (1992) Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2. Nature 358(6389):741–743

    Article  Google Scholar 

  • Fehling J, Davidson K, Bolch CJ, Brand TD, Narayanaswamy BE (2012) The relationship between phytoplankton distribution and water column characteristics in North West European shelf sea waters. PLoS One 7(3):e34098

    Article  Google Scholar 

  • Furnas MJ (1990) In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J Plankton Res 12(6):1117–1151

    Article  Google Scholar 

  • Ganjian Khenari AG, Ghasemnejad M, Roohi A, Omar RPWMW, Mansor M, Mirbagheri B, Ghaedi A (2012) Temporal and spatial variations of phytoplankton in the CS. Afr J Microbiol Res 6(20):4239–4246

    Article  Google Scholar 

  • Ganjian A, Wan Maznah WO, Yahya K, Fazli H, Vahedi M, Roohi A, Farabi SMV (2010) Seasonal and regional distribution of phytoplankton in the southern CS. Iran J Fish Sci 9(3):382–401

    Google Scholar 

  • Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 33(4):796–822

    Google Scholar 

  • Hernández-Becerril DU, Altamirano RC, Alonso RR (2000) The dinoflagellate genus Prorocentrum along the coasts of the Mexican Pacific. Hydrobiologia 418(1):111–121

    Article  Google Scholar 

  • Humborg C, Smedberg E, Blomqvist S (2004) Nutrient variations in boreal and subarctic Swedish rivers: landscape control of land–sea fluxes. Limnol Oceanogr 49:1871–1883

    Article  Google Scholar 

  • Jaanus A, Toming K, Hällfors S, Kaljurand K, Lips I (2009) Potential phytoplankton indicator species for monitoring Baltic coastal waters in the summer period. Hydrobiologia 629(1):157–168

    Article  Google Scholar 

  • Kahle D, Wickham H (2013) Ggmap: spatial visualization with ggplot2. The R Journal 5(1):144–161 http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

    Google Scholar 

  • Kideys AE, Soydemir N, Eker E, Vladymyrov V, Soloviev D, Melin F (2005) Phytoplankton distribution in the CS during march 2001. Hydrobiologia 543:159–168

    Article  Google Scholar 

  • Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi. ISBN 92-9059-179-X

  • Kiørboe T (1993) Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv Mar Biol 29:1–72

    Article  Google Scholar 

  • Kormas KA, Garametsi V, Nicolaidou A (2002) Size-fractionated phytoplankton chlorophyll in an eastern Mediterranean coastal system (Maliakos Gulf, Greece). Helgoland Mar Res 56:125–133

    Article  Google Scholar 

  • Kosarev AN (2005) Physico-geographical conditions of the CS. In: Kostianoy AG, Kosarev AN (eds) The CS environment. Springer, Germany, pp 5–31

    Google Scholar 

  • Kosarev AN, Yablonskaya AE (1994) The Caspian Sea. SPB Academic Publishing, The Hague.

  • Koushali HP, Moshtagh R, Mastoori R (2015) Water resources modelling using system dynamic in Vensim. J Water Resource Hydraul Eng 4(3):251–256

    Article  Google Scholar 

  • Kruskal JB, Wish M (1978) Multidimensional Scaling. Sage Publications, Beverly Hills

    Book  Google Scholar 

  • Lara-Lara JR, Alvarez Borrego S, Small LF (1980) Variability and tidal exchange of ecological properties in a coastal lagoon. Estuar Coast Shelf Sci 11:613–637

    Article  Google Scholar 

  • Laza-Martinez A, Orive E, Miguel I (2011) Morphological and genetic characterization of benthic dinoflagellates of the genera Coolia, Ostreopsis and Prorocentrum from the south-eastern Bay of Biscay. Eur J Phycol 46(1):45–65

    Article  Google Scholar 

  • Legendre P, Legendre LFJ (1998) Numerical Ecology. Second English edition, Elsevier Science, Amsterdam

    Google Scholar 

  • Legendre P, Legendre LFJ (2012) Numerical Ecology. Third English edition, Elsevier Science, Amsterdam

    Google Scholar 

  • Li Y, Wang DR, Su J, Zhang J (2013) Impact of monsoon-driven circulation on phytoplankton assemblages near fringing reefs along the east coast of Hainan Island, China. Deep Sea Res PT II: Top Stud Oceanogr 96:75–87

    Article  Google Scholar 

  • Lomas MW, Glibert PM (1999) Interactions between NH+ 4 and NO− 3 uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar Biol 133(3):541–551

    Article  Google Scholar 

  • Lopes MRM, Bicudo CEDM, Ferragut MC (2005) Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542(1):235–247

    Article  Google Scholar 

  • Lu FH, Ni HG, Liu F, Zeng EY (2009) Occurrence of nutrients in riverine runoff of the Pearl River Delta, South China. J Hydrol 376(1– 2):107–115

    Article  Google Scholar 

  • May CL, Koseff JR, Lucas LV, Cloern JE, Schoellhamer DH (2003) Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Mar Ecol Prog Ser 254:111–128

    Article  Google Scholar 

  • McCarthy JJ, Goldman JC (1979) Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203(4381):670–672

    Article  Google Scholar 

  • Mehdipour N, Gearmi MH (2016) Benthic communities on hard substrates and intra-community relation with environmental factors in mesohaline estuarine. J Fishe Sci Com 10(3):23

    Google Scholar 

  • Melo S, Bozelli RL, Esteves FA (2007) Temporal and spatial fluctuations of phytoplankton in a tropical coastal lagoon, southeast Brazil. Braz J Biol 67(3):475–483

    Article  Google Scholar 

  • Moncheva OA, Carstensen SJ (2005) Long-term variability of vertical chlorophyll a and nitrate profiles in the open Black Sea: eutrophication and climate change. Mar Ecol Prog Ser 294:95–107

    Article  Google Scholar 

  • Muylaert K, Gonzales R, Franck M, Lionard M, Van der Zee C, Cattrijsse A, Sabbe K, Chou L, Vyverman W (2006) Spatial variation in phytoplankton dynamics in the Belgian coastal zone of the North Sea studied by microscopy, HPLC-CHEMTAX and underway fluorescence recordings. J Sea Res 55(4):253–265

    Article  Google Scholar 

  • Nasrollahzadeh HS, Din ZB, Foong SY, Makhlough A (2008) Trophic status of the Iranian CS based on water quality parameters and phytoplankton diversity. Cont Shelf Res 28(9):1153–1165

    Article  Google Scholar 

  • Nehring S (1998) Establishment of thermophilic phytoplankton species in the North Sea: biological indicators of climatic changes? ICES J Mar Sci: J Du Conseil 55(4):818–823

    Article  Google Scholar 

  • Newell GE, Newell RC (1977) Marine plankton: a practical guide, 5th edn. Hutchinson Educational, London

    Google Scholar 

  • Oksanen FJ, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHM, Szoecs E, Wagner H (2016) Vegan: community ecology package. R Package Version 2:4–1 https://CRAN.R-project.org/package=vegan

    Google Scholar 

  • Pal R, Choudhury AK (2014) An introduction to Phytoplanktons: diversity and ecology. Springer, India

    Book  Google Scholar 

  • Pandiyarajan RS, Shenai-Tirodkar PS, Ayajuddin M, Ansari ZA (2014) Distribution, abundance and diversity of phytoplankton in the inshore waters of Nizampatnam, south east coast of India. Ind J Geo-Mar Sci 43:348–356

    Google Scholar 

  • Pedersen MF, Borum J (1996) Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar Ecol Prog Ser 142:261–272

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  • Rashash DMC, Gallagher DL (1995) An evolution of algal enumeration. Am Water Works Assn J 87:127–132

    Google Scholar 

  • Roberts DW (2016) Labdsv: ordination and multivariate analysis for ecology. R Package Version 1.8–0. https://CRAN.R-project.org/package=labdsv

  • Roohi A, Kideys AE, Sajjadi A, Hashemian A, Pourgholam R, Fazli H, Khanari AG, Eker-Develi E (2010) Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the southern CS after the invasion of the ctenophore Mnemiopsis Leidyi. Biol Invasions 12(7):2343–2361

    Article  Google Scholar 

  • Rudek J, Paerl HW, Mallin MA, Bates PW (1991) Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River estuary, North Carolina. Mar Ecol Prog Ser 75(2):133–142

    Article  Google Scholar 

  • Sommer U (1994) Are marine diatoms favoured by high Si/N ratios? Mar Ecol Prog Ser 115:309–315

    Article  Google Scholar 

  • Sournia A (1978) Phytoplankton manual, monographs on oceanographic methodology. UNESCO, Paris

    Google Scholar 

  • Stonik IV, Selina MS (2001) Species composition and seasonal dynamics of density and biomass of euglenoids in Peter the Great Bay, sea of Japan. Russ J Mar Biol 27(3):174–176

    Article  Google Scholar 

  • Tas S (2017) Planktonic diatom composition and environmental conditions in the golden horn estuary (sea of Marmara, Turkey). Fundam Appl Limnol 189(2):153–166

    Article  Google Scholar 

  • Trevisan R, Poggi C, Squartini A (2010) Factors affecting diatom dynamics in the alpine lakes of Colbricon (northern Italy): a 10-year survey. J Limnol 69:199–208

    Article  Google Scholar 

  • Tuzhilkin VS, Kosarev AN (2005) Thermohaline structure and general circulation of the CS waters. In: Kostianoy AG, Kosarev AN (eds) The CS environment. Springer, Germany, pp 33–57

    Google Scholar 

  • Varona-Cordero F, Gutiérrez-Mendieta FJ, del Castillo MEM (2010) Phytoplankton assemblages in two compartmentalized coastal tropical lagoons (Carretas-Pereyra and Chantuto-Panzacola, Mexico). J Plankton Res 32(9):1283–1299

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth Edition. Springer, New York. ISBN 0-387-95457-0

  • Wang C, Li X, Wang X, Wu N, Yang W, Lai Z and Lek S (2016) Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system. Fundamental and Applied Limnology/Archiv für Hydrobiologie 187(4):335–349

  • Wehr JD, Descy JP (1998) Use of phytoplankton in large river management. J Phycol 34(5):741–749

    Article  Google Scholar 

  • Yurkovskis A (2004) Long-term land-based and internal forcing of the nutrient state of the Gulf of Riga (Baltic Sea). J Mar Sys 50:181–197

    Article  Google Scholar 

  • Zakeri H (1997) Water catchment area of the Caspian Sea. Student Quarterly of the Water Engineering Faculty of Khajeh Nassirud-Din Tousi, Abangan, p 12. http://www.netiran.com/Htdocs/Clippings/Social/970700XXSO0 2.html

  • Zhu W, Wan L, Zhao L (2010) Effect of nutrient level on phytoplankton community structure in different water bodies. J Environ Sci 22(1):32–39

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted under the Iranian National Institute for Oceanography and Atmospheric Science foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasan Gerami.

Ethics declarations

Conflict of Interest

None to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, N., Wang, C. & Gerami, M.H. Spatio-Temporal Pattern of Phytoplankton Assemblages in the Southern Part of the Caspian Sea. Thalassas 33, 99–108 (2017). https://doi.org/10.1007/s41208-017-0027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41208-017-0027-0

Keywords

Navigation