Skip to main content
Log in

Assessment of the antioxidant and antibacterial properties of red algae (Rhodophyta) from the north coast of Tunisia

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

Red seaweeds are a rich source of compounds with various bioactive properties, such as antimicrobial, antioxidant, antifouling, antiproliferative, and anticancer activities. In this study, the antioxidant and antibacterial properties of twelve red macroalgae collected from the Tunisian coast were examined. Estimated total phenolic, flavonoid, and tannin contents in methanolic extracts were found to vary among species. Gracilaria gracilis presented the highest concentration of total phenolic compounds (19.2 ± 1.88 mg GAE/g dried biomass), Laurencia obtusa showed the highest tannin content (18.95 ± 0.84 mg ECat/g DB), and Sphaerococcus cornopifolius showed the highest flavonoid content (7.17 ± 0 mg ECat/g DB). Six species showed significant DPPH radical scavenging activities and total antioxidant capacities: Asparagopsis armata, Gracilaria gracilis, Hypnea musciformis, Laurencia obtusa, Pterocladiella capillacea, and Sphaerococcus cornopifolius. Antimicrobial activity was observed for five species. This study therefore highlights the potential use of red seaweed species collected from the Tunisian coast as sources of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Enazi NM, Awaad AS, Alqasoumi SI, Alwethairi MF (2018) Biological activities of the red algae Galaxaura rugosa and Liagora hawaiiana butters. Saudi Pharmaceutical J 26:25–32

    Article  Google Scholar 

  • Alencar DB, Diniz JC, Rocha SAS, Pires-Cavalcante KMS, Lima RL, Sousa KC, Freitas JO, Bezerra RM, Baracho BM, Sampaio AH, Viana FA, Saker-Sampaio S (2018) Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity. An Acad Bras Cienc. 90(1):449–459

    Article  Google Scholar 

  • Ben Maiz N (1995) Étude nationale sur la diversité biologique de la flore marine et aquatique en Tunisie. Projet de coopération: MEAT/PNUE/GEF. Minister de l’Environment, Tunis

  • Ben Said R, Mensi F, Majdoub H, Ben Said A, Ben Said B, Bouraoui A (2018) Effects of depth and initial fragment weights of Gracilaria gracilis on the growth, agar yield, quality and biochemical composition. J Appl Phycol 30(4):2499–2512

    Article  Google Scholar 

  • Bouhlal R, Riadi H, Martínez J, Bourgougnon N (2012) The antibacterial potential of the algae (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean coast of Morocco. Afr J Biotech 9(38):6365–6372

  • Bouhlal R, Riadi H, Bourgougnon N (2013) Antioxidant activity of Rhodophyceae extracts from Atlantic and Mediterranean coasts of Morocco. Afr J Plant Sci 7(3):110–117

  • Buschmann A, Camus C, Infante RJ, Neori A, Israel A, Hernández-González M, Pereda S, Gomez Pinchetti JL, Golberg A, Tadmor Shalev N, Critchley A (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Cabioch J, Floch Y, Le Toquin A, Boudouresque CF, Meinesz A, Verlaque M (2006) Guide des algues des mers d’Europe. Delachaux et Niestlé, Paris

  • Chakraborty K, Joseph D, Joy M, Raola VK (2015) Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants. Food Chem 212:778–788

    Article  Google Scholar 

  • Chebil Ajjabi L, Abaab M, Segni R (2018) The red macroalga Gracilaria gracilis in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance. Aquacult Int 26:253–266

  • Creis E, Gall EA, Potin P (2018) Ubiquitous phlorotannins prospects and perspectives. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules. Wiley VCH, Weinheim, pp 67–116

  • Dellai A, Laajili S, Le Morvan V, Robert J, Bouraoui A (2013) Antiproliferative activity and phenolics of the Mediterranean seaweed Laurencia obtusa. Ind Crops Prod 47:252–255

    Article  Google Scholar 

  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50(10):3010–3014

    Article  Google Scholar 

  • El Kassas HY, Attia AA (2014) Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red algae Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev 15(3):1299–1306

  • FAO (2018) The global status of seaweed production, trade and utilization. Globe Fish Res Program 124:120

    Google Scholar 

  • Farasat M, Khavari-Nejad RA, Bagher Navari SM, Namjooyan F (2013) Antioxidant properties of two edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res 13(1):163–170

  • Fellah F, Louaileche H, Dehbi-Zebboudj A, Touati N (2017) Seasonal variations in the phenolic compound content and antioxidant activities of three selected species of seaweeds from Tiskerth islet, Bejaia. Algeria J Mater Environ Sci 8(12):4451–4456

    Google Scholar 

  • Fernando IPS, Ryu B, Ahn G, Yeo I-K, Jeon Y-J (2020) Therapeutic potential of algal natural products against metabolic syndrome: a review of recent developments. Trends Food Sci Technol 97:286–299

  • Fischer W, Bauchot ML, Schneider M (1987) Fiches FAO d’identification des espèces pour les besoins de la pêche, révision 1. Méditerranée et mer Noire. Zone de pêche 37. Volume I. Végétaux et Invertébrés. FAO, Rome, 1:760

  • Gamze Y, Egemen D, Sukran D (2014) Comparison of the antioxidative components of some marine macroalgae from Turkey. Pak J Bot 46(2):753–757

    Google Scholar 

  • Gupta S, Abu-Ghannam N (2011) Bioactive potential and possible health effects of edible brown seaweeds. Tre Food Sci Technol 22:315–326

    Article  Google Scholar 

  • Hellio C, Broise D, Dufossé L, Gal Y, Bourgougnon N (2001) Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Marine Environ Res 52:231–247

    Article  Google Scholar 

  • Heo SJ, Cha SH, Lee KW, Jeon YJ (2006) Antioxidant activities of red algae from jeju island. Algae 21(1):149–156

    Article  Google Scholar 

  • Ismail GA (2017) Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci Technol Campinas 37(2):294–302

    Article  Google Scholar 

  • Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M (2016) Antimicrobial Activities of bacteria associated with the brown alga padina pavonica. Front Microbiol 7

  • Kolanjinathan K, Ganesh P, Saranraj P (2014) Pharmacological importance of seaweeds: a review. World J Fish Marine Sci 6(1):01–15

    Google Scholar 

  • Kumar PS, Mubarak AD, Saratale RG, Saratale GD, Pugazhendhi A, Gopalakrishnan K, Thajuddin N (2017) Synthesis of nano-cuboidal gold particles for effective antimicrobial property against clinical human pathogens. Microb Pathog 113:68–73

  • Lavanya B, Narayanan N, Maheshwaran A (2016) Pharmacological studies on Hypnea musciformis (Wulfen) Lamouroux. IJARIIT 2(4)

  • Mohy El-Din SM, El-Ahwany AMD (2016) Bioactivity and phytochemical constituents of marine red algae (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci 10:471–484

  • Neethu PV, Suthindhiran K, Jayasri MA (2017) Antioxidant and antiproliferative activity of Asparagopsis taxiformis. Phcog Res 9(3):238–246

  • Pangestuti R, Kim SK (2011) Neuroprotective effects of marine algae. Mar Drugs 9(5):803–818

  • Pinteus S, Alves C, Monteiro H, Araujo E, Horta A, Pedrosa R (2015) Asparagopsis armata and Sphaerococcus coronopifolius as a natural source of antimicrobial compounds. World J Microbiol Biotechnol 31(3):445–451

    Article  Google Scholar 

  • Pinteus S, Rodrigues AN, Silva J, Lokman C, Lemos MF, Pedrosa R (2016) The marine invasive Asparagopsis armata (Harvey, 1855) as source of bioactive valuable compounds—antioxidant potential enrichment by vacuum liquid chromatography. In: International Meeting on Marine Research (IMMR’18), Peniche, Portugal, 5–6 July 2018. https://doi.org/10.3389/conf.FMARS.2016.04.00067

  • Price ML, Van Scoyoc S, Butler LG (1978) A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 26:1214–1218

    Article  Google Scholar 

  • Prieto P, Pineda M, Anguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341

  • Rico M, López A, Tangil MS, Rivero A (2012) Phenolic profile of crude extracts derived from a red alga, Corallina elongata Ellis & Solander. In: Krueger D, Meyer H (eds) Algae. Nova Science, New York, pp 135–144

  • Rodrigues D, Alves C, Horta A, Pinteus S, Silva J, Culioli G, Thomas OP, Pedrosa R (2015) Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga Sphaerococcus coronopifolius. Mar Drugs 13:713–726

  • Rozo G, Rozo C, Puyana M, Ramos FA, Almonacid C, Castro H (2019) Two compounds of the Colombian algae Hypnea musciformis prevent oxidative damage in human low density lipoproteins LDLs. J Functional Foods 60:103399

    Article  Google Scholar 

  • Sarojini Y, Laakshminarayana K, Seshagiri P (2012) Varation in distribution of flavonoids in some seaweed of Visakhapatnam coast of India. Der Pharma Chem 4(4):1481–1484

  • Shanab SMM (2007) Antioxidant and antibiotic activities of some algae (Egyptian isolates). Int J Agri Biol 9(2):220–225

  • Smyrniotopoulos V, Quesada A, Vagias C, Moreau D, Roussakis C, Roussis V (2008) Cytotoxic bromoditerpenes from the red alga Sphaerococcus coronopifolius. Tetrahedron 64(22):5184–5190

    Article  Google Scholar 

  • Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511

    Article  Google Scholar 

  • Widowati I, Lubac D, Puspita M, Bourgougnon N (2014) Antibacterial and antioxidant properties of the red alga Gracilaria gracilis from the north coast of Tava, Semarang, Indonesia. Int J Latest Res Sci Technol 3(3):179–185

    Google Scholar 

  • Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 8(2019):9732325

    Google Scholar 

  • Xiulan X, He Z, Chen N, Tang Z, Wang Q, Cai Y (2019) The roles of environmental factors in regulation of oxidative stress in plant. Biomed Res Int 8:9732325

    Google Scholar 

  • Yalcinkaya T, Uzilday B, Ozgur R, Turkan I, Mano J (2019) Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environ Exp Bot 165:139–149

    Article  Google Scholar 

  • Zubia M, Fabre MS, Kerjean V, Deslandes E (2009) Antioxidant and cytotoxic activities of some red algae (Rhodophyta) from Brittany coasts (France). Bot Mar 52:268–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imen Hmani or Leila Ktari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Philippe Michaud, Chief Editor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmani, I., Ktari, L., Ismail, A. et al. Assessment of the antioxidant and antibacterial properties of red algae (Rhodophyta) from the north coast of Tunisia. Euro-Mediterr J Environ Integr 6, 13 (2021). https://doi.org/10.1007/s41207-020-00222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-020-00222-7

Keywords

Navigation