Skip to main content
Log in

On the Rate of Convergence in the Bernstein–von Mises Theorem for M/M/1 Queue

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

The paper discusses the rate of convergence in the Bernstein–von Mises theorem for M/M/1 queueing system which is observed over a continuous time interval (0, T] where T is a suitable stopping time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, chapter 6: gamma and related functions. Dover, New York, NY

    MATH  Google Scholar 

  • Acharya SK (1999) On normal approximation for maximum likelihood estimation from single server queues. Queueing Syst 31:207–216

    Article  MathSciNet  Google Scholar 

  • Acharya SK, Mishra MN (2007) Bernstein–von Mises theorem for \(M/M/1\) queue. Commun Stat Theory Methods 36:203–209

    Article  MathSciNet  Google Scholar 

  • Acharya SK, Singh SK (2019) Asymptotic properties of maximum likelihood estimators from single server queues: a martingale approach. Commun Stat Theory Methods 48:3549–3557

    Article  MathSciNet  Google Scholar 

  • Almeida MAC, Cruz FRB (2018) A note on Bayesian estimation of traffic intensity in single-server Markovian queues. Commun Stat Simul Comput 47(9):2577–2586

    Article  MathSciNet  Google Scholar 

  • Armero C (1985) Bayesian analysis of \(M/M/1\) queues. Bayesian Stat 2:613–617

    MathSciNet  Google Scholar 

  • Armero C (1994) Bayesian inference in Markovian queues. Queueing Syst 15:419–426

    Article  MathSciNet  Google Scholar 

  • Armero C, Bayarri MJ (1994) Bayesian prediction in \(M/M/1\) queues. Queueing Syst 15:401–417

    Article  MathSciNet  Google Scholar 

  • Basak A, Choudhury A (2019) Bayesian inference and prediction in single server \(M/M/1\) queuing model based on queue length. Commun Stat Simul Comput (in press). https://doi.org/10.1080/03610918.2019.1586924

    Article  Google Scholar 

  • Basawa IV, Prabhu NU (1981) Estimation in single server queues. Naval Res Logist Quart 28:475–487

    Article  MathSciNet  Google Scholar 

  • Basawa IV, Prabhu NU (1988) Large sample inference from single server queues. Queueing Syst 3(4):289–304

    Article  MathSciNet  Google Scholar 

  • Benes VE (1957) A sufficient set of statistics for a simple telephone exchange model. Bell Syst Tech J 36:939–964

    Article  Google Scholar 

  • Bhat UN, Rao SS (1987) Statistical analysis of queueing systems. Queueing Syst 1:217–247

    Article  MathSciNet  Google Scholar 

  • Bhat UN, Miller GK, Rao SS (1997) Statistical analysis of queueing systems. In: Dshalalow JH (ed) Frontiers in queueing. CRC Press, FL

    Google Scholar 

  • Borwanker JD, Kallianpur G, Prakasa Rao BLS (1971) The Bernstein–Von Mises theorem for Markov processes. Ann Math Stat 42:1241–1253

    Article  MathSciNet  Google Scholar 

  • Chowdhury S, Mukherjee SP (2011) Estimation of waiting time distribution in an \(M/M/1\) queue. OPSEARCH 48(4):306–317

    Article  MathSciNet  Google Scholar 

  • Chowdhury S, Mukherjee SP (2013) Estimation of traffic intensity based on queue length in a single \(M/M/1\) queue. Commun Stat Theory Methods 42:2376–2390

    Article  MathSciNet  Google Scholar 

  • Clarke AB (1957) Maximum likelihood estimates in a simple queue. Ann Math Stat 28:1036–1040

    Article  MathSciNet  Google Scholar 

  • Cox DR (1965) Some problems of statistical analysis connected with congestion. In: Smith WL, Wilkinson WB (eds) Proceedings of the symposium on congestion theory, University of North Carolina Press, Chapel Hill, NC, pp 289–316

  • Feller W (1968) An introduction to probability theory and its application. Wiely, New York

    MATH  Google Scholar 

  • Goyal TL, Harris CM (1972) Maximum likelihood estimation for queues with state dependent service. Sankhya Ser A 34:65–68

    MathSciNet  MATH  Google Scholar 

  • McGrath MF, Gross D, Singpurwalla ND (1987) subjective Bayesian approach to the theory of queues, part-1: modelling. Queueing Syst 1:317–333

    Article  Google Scholar 

  • McGrath MF, Singpurwalla ND (1987) Subjective Bayesian approach to the theory of queues, part-2: inference and information in \(M/M/1\) queues. Queueing Syst 1:335–353

    Article  Google Scholar 

  • Mishra MN, Prakasa Rao BLS (1987) Rate of convergence in the Bernstein–von Mises theorem for a class of diffusion processes. Stochastics 22:59–75

    Article  MathSciNet  Google Scholar 

  • Muddapur MV (1972) Bayesian Estimates of parameters in some queueing models. Ann Inst Stat Math 24:327–331

    Article  MathSciNet  Google Scholar 

  • Singh SK, Acharya SK (2019a) Normal approximation of posterior distribution in \(GI/G/1\) queue. J Indian Soc Probab Stat 20:51–64

    Article  Google Scholar 

  • Singh SK, Acharya SK (2019b) Bernstein-von Mises theorem and Bayes estimation from single server queues. Commun Stat Theory Methods (In press). https://doi.org/10.1080/03610926.2019.1634211

    Article  Google Scholar 

  • Singh SK, Acharya SK (2019c) Equivalence between Bayes and the maximum likelihood estimator in \(M/M/1\) queue. Commun Stat Theory Methods 48:4780–4793

    Article  MathSciNet  Google Scholar 

  • Singh SK (2020) Moderate deviation for maximum likelihood estimators from single server queues. Probability Uncertainty Quantitative Risk 5:2. https://doi.org/10.1186/s41546-020-00044-z

    Article  MathSciNet  Google Scholar 

  • Thiruvaiyaru D, Basawa IV (1992) Empirical Bayes estimation for queueing systems and networks. Queueing Syst 11:179–202

    Article  MathSciNet  Google Scholar 

  • Wolff RW (1965) Problems of statistical inference for birth and death queueing models. Oper Res 13:343–357

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their valuable reports which improved the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saroja Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 3.1

Note that

$$\begin{aligned} f< d(1-r) \Rightarrow f< d g \quad \text {or} \quad g < 1-r. \end{aligned}$$

Then

$$\begin{aligned} P \{ w: f(w)< d (1-r) \} \le 1 - P\{ w: \frac{f(w)}{g(w)} < d \} + P\{ w: | g(w) -1 | >r \}. \end{aligned}$$

Or,

$$\begin{aligned} 1 - P \{ w: f(w) \ge d (1-r)\} \le 1 - P\{ w: \frac{f(w)}{g(w)} < d\} + P\{ w: | g(w) -1 | >r\}, \end{aligned}$$

(without loss of generality, we have assumed here that \(g > 0\) a.s.). \(\square \)

Proof of Lemma 3.2

$$\begin{aligned}&P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) \lambda (\theta _0) |\upsilon _T(t)- e^{-\frac{t^2}{2}}| dt> h(1) \lambda (\theta _0) \left( e^{r_1^2(T)} - 1\right) \bigg \} \\&\quad = P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) \lambda (\theta _0) e^{-\frac{t^2}{2}} | e^{-\frac{t^2}{2}(b_T -1)}- 1 | dt \\&\quad> h(1) \lambda (\theta _0) \left( e^{r_1^2(T)} - 1\right) \bigg \} \\&\quad \le P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) \lambda (\theta _0) e^{-\frac{t^2}{2}} [ e^{\frac{t^2}{2} | b_T -1| }- 1 ] dt \\&\qquad> h(1) \lambda (\theta _0) \left( e^{r_1^2(T)} - 1\right) \bigg \} \quad \text {(since } |e^{-x}-1| \le e^{|x|}-1 \forall x) \\&\quad \le P \bigg \{ h(1)\lambda (\theta _0) [ e^{\frac{{r_1^2(T) I(\theta _)}}{2}| b_T -1| }- 1 ] dt> h(1) \lambda (\theta _0) \left( e^{r_1^2(T)} - 1\right) \bigg \} \\&\quad (\text {by assumption } (A_3)), \\&\quad = P\{| b_T -1|> 2 / I(\theta _0)\} \\&\quad = P\{| b_T -1| > 2 r_1^2(T)~ r_2^2(T)\}. \end{aligned}$$

\(\square \)

Proof of Lemma 3.3

$$\begin{aligned}&P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) \upsilon _T(t) \bigg | \lambda (\theta _0) - \lambda \bigg ( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg ) \bigg | dt \\&\quad> C_1 h(1-r_1(T))(r_2(T) + r_1(T))\bigg \} \\&\quad = P\bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2} b_T} \bigg | \lambda (\theta _0) - \lambda \bigg ( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg ) \bigg | dt \\&\quad> C_1 h(1-r_1(T))(r_2(T) + r_1(T)) \bigg \} \\&\quad \le P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2} (1- |b_T-1|)} \bigg | \lambda (\theta _0) - \lambda \bigg ( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg ) \bigg | dt \\&\quad> C_1 h(1-r_1(T))(r_2(T) + r_1(T))\bigg \} \\&\quad \le P\{|b_T -1|> r_1(T)\} \\&\qquad + P \bigg \{ \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} e^{-\frac{t^2}{2} (1- r_1(T))} Z(t) dt \bigg | \lambda (\theta _0) - \lambda \bigg ( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg )\bigg | \\&\quad> C_1 h(1-r_1(T)) (r_2(T) + r_1(T))\bigg \} \\&\quad \le P \{ |b_T -1|> r_1(T)\} \\&\qquad + P \bigg \{ \bigg ( \int \limits _{|t| \le r_1(T) \sqrt{I(\theta _0)}} e^{-\frac{t^2}{2} (1- r_1(T))} Z(t) dt \bigg ) \\&\quad \times C_1 \left[ |\theta _0-{\widehat{\theta }}_T|+r_1(T)\right]> C_1 h(1-r_1(T))(r_2(T) + r_1(T))\bigg \} \\&\quad (\text {by assumption }(A_1)), \nonumber \\&\quad \le P\{ |b_T -1|> r_1(T)\} \\&\qquad + P \bigg \{ C_1 h(1-r_1(T))\left[ |\theta _0-{\widehat{\theta }}_T|+r_1(T)\right] \\&\quad> C_1 h(1-r_1(T)) (r_2(T) + r_1(T))\bigg \} \\&\quad (\text {by assumption }(A_3))\\&\quad =P\left\{ |b_T -1|> r_1(T)\right\} + P \left\{ |{\widehat{\theta }}_T -\theta _0 |>r_2(T) \right\} . \end{aligned}$$

\(\square \)

Proof of Lemma 3.4

$$\begin{aligned}&P \bigg \{ \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) \upsilon _T(t) \bigg | \lambda \left( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \right) \bigg | dt \\&\quad> C_3 h\left( 1-r_1(T)- p\right) \left( 2r_2^{\delta }(T) + r_2^{2\delta }(T) \right) \bigg \} \\&\quad \le P \bigg \{ \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2} \left( 1-|b_T -1|\right) } C_2 \left( 1+\bigg | {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg |^{\delta } \right) dt\\&\quad> C_3 h\left( 1-r_1(T)- p\right) \left( 2r_2^{\delta }(T)+r_2^{2\delta }(T) \right) \bigg \} \quad \text {(by assumption }(A_4)) \\&\quad \le P \left\{ |b_T -1|> r_1(T)\right\} \\&\quad + P\bigg \{ \int \limits _{|t|> r_1(T)\sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2}(1- r_1(T))} \\&\quad \times C_2 \left( 1 + k_{\delta }^{\star } |{\widehat{\theta }}_T -\theta _0|^{\delta } + k_{\delta }^{\star } |\theta _0 |^{\delta } + k_{\delta }^{\star } \bigg |\frac{t}{\sqrt{I(\theta _0)}} \bigg |^{\delta } \right) dt \\&\quad > C_3 h\left( 1-r_1(T)-p\right) \left( 2r_2^{\delta }(T) + r_2^{2\delta }(T) \right) \bigg \} \\ \end{aligned}$$
$$\begin{aligned}&\bigg [\text {since} |a+l|^{\delta } \le k_{\delta } \left( |a|^{\delta } + |l|^{\delta }\right) , \text {where} k_{\delta }=1 \text {or} 2^{\delta -1} \text {according as} \delta \le 1\\&\text {or} \delta \ge 1 \text {and} k_{\delta } = \text {max}\left( k_{\delta }, k_{\delta }^2\right) \bigg ] \\&\quad \le P \left\{ |b_T -1|> r_1(T)\right\} \\&\quad +P \bigg \{ \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2} \left( 1- r_1(T) - p\right) } e^{-p\frac{t^2}{2}} \\&\quad ~~\times C_2 \bigg (1+k_{\delta }^{\star }|{\widehat{\theta }}_T -\theta _0 |^{\delta } + k_{\delta }^{\star } |\theta _0 |^{\delta } + k_{\delta }^{\star } \bigg | \frac{t}{\sqrt{I(\theta _0)}} \bigg |^{\delta }\bigg ) dt \\&\quad> C_3 h\left( 1-r_1(T)- p\right) \left( 2r_2^{\delta }(T) + r_2^{2\delta }(T) \right) \bigg \} \\&\quad \le P \left\{ |b_T -1|> r_1(T)\right\} \\&\qquad + P \bigg \{ \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2}\left( 1- r_1(T)-p\right) } \times C_3 \left( \frac{2}{|t|^{\delta }}+\frac{| {\widehat{\theta }}_T-\theta _0|^{\delta }}{|t|^{\delta }} \right) dt \\&\quad> C_3 h\left( 1-r_1(T)- p\right) \left( 2r_2^{\delta }(T) + r_2^{2\delta }(T) \right) \bigg \} \\&\quad \le P \{|b_T -1|> r_1(T)\} \\&\qquad + P \bigg \{ C_3 h\left( 1- r_1(T) - p\right) \left( \frac{2}{(r_1(T\sqrt{I(\theta _0)})^{\delta }} \right) + \left( \frac{|{\widehat{\theta }}_T -\theta _0 |^{\delta }}{(r_1(T) \sqrt{I(\theta _0)})^{\delta }} \right) \\&\quad> C_3 h\left( 1-r_1(T)- p\right) \left( 2r_2^{\delta }(T) + r_2^{2\delta }(T) \right) \bigg \} \quad \text {(by assumption} (A_3)) \\&\quad \le P \{|b_T -1|> r_1(T)\} + P \left\{ \left( 2 r_2^{\delta }(T) + |{\widehat{\theta }}_T -\theta _0 |^{\delta }r_2^{\delta }(T) \right)> 2r_2^{\delta }(T) + r_2^{2\delta }(T)\right\} \\&\quad = P \{|b_T -1|> r_1(T)\} +P\left\{ |{\widehat{\theta }}_T-\theta _0|>r_2(T)\right\} . \end{aligned}$$

\(\square \)

Proof of Lemma 3.5

Observe that

$$\begin{aligned}&\lambda (\theta _0) \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2}} dt \nonumber \\&\quad = \lambda (\theta _0) \int \limits _{|t| > r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2} (1-p)} e^{-p\frac{t^2}{2}} dt \quad (\text {where } 0< p< 1) \nonumber \\&\quad \le \lambda (\theta _0) e^{-\frac{p}{2} (r_1^2(T) I(\theta _0))}h(1-p) \quad (\text {by assumption} (A_3)) \nonumber \\&\quad < (2/p) \lambda (\theta _0)h(1-p)r_2^2(T) = C_4 h(1-p) r_2^2(T). \end{aligned}$$
(A.1)

Now using Lemmas 3.2 and 3.3 we get,

$$\begin{aligned}&P \bigg \{ \int _{|t| \le r_1(T) \sqrt{I(\theta _0)}} Z(t) \bigg | \upsilon _T(t) \lambda \bigg ( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg ) - \lambda (\theta _0) e^{-\frac{t^2}{2}} \bigg | dt \nonumber \\&\quad> h(1) \lambda (\theta _0) \left( e^{r_1^2(T)} -1\right) + C_1 h(1-r_1(T))(r_2(T) + r_1(T))\bigg \} \nonumber \\&\quad \le P \left\{ |b_T-1|> 2r_1^2(T) r_2^2(T)\right\} + P\left\{ |b_T-1|>r_1(T)\right\} \nonumber \\&\quad + P\left\{ |{\widehat{\theta }}_T-\theta _0|>r_2(T)\right\} . \end{aligned}$$
(A.2)

Again using Lemma 3.4 and (A.1) we get,

$$\begin{aligned}&P \bigg \{ \int _{|t|> r_1(T) \sqrt{I(\theta _0)}}Z(t) \bigg | \upsilon _T(t) \lambda \bigg ({\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \bigg ) - \lambda (\theta _0) e^{-\frac{t^2}{2}} \bigg | dt \nonumber \\&\quad> C_3 h\left( 1-r_1(T)-p\right) \left( 2 r_2^{\delta }(T) + r_2^{2 \delta }(T) \right) + C_4 h(1-p) r_2^2(T) \bigg \}\nonumber \\&\quad \le P \bigg \{ \int _{|t|> r_1(T) \sqrt{I(\theta _0)}}Z(t) \bigg | \upsilon _T(t) \lambda \left( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}} \right) \bigg | dt\nonumber \\&\qquad + \bigg | \lambda (\theta _0) \int \limits _{|t|> r_1(T) \sqrt{I(\theta _0)}} Z(t) e^{-\frac{t^2}{2}} dt \bigg | \nonumber \\&\quad> C_3 h\left( 1-r_1(T)-p\right) \left( 2 r_2^{\delta }(T) + r_2^{2 \delta }(T) \right) + C_4 h(1-p) r_2^2(T) \bigg \} \nonumber \\&\quad \le P \bigg \{ \int _{|t|> r_1(T) \sqrt{I(\theta _0)}}Z(t) \upsilon _T(t) \lambda \left( {\widehat{\theta }}_T + \frac{t}{\sqrt{I(\theta _0)}}\right) dt \nonumber \\&\quad> C_3 h\left( 1-r_1(T)-p\right) \left( 2r_2^{\delta }(T)+r_2^{2\delta }(T)\right) \bigg \} \nonumber \\&\quad \le P \left\{ |b_T-1|>r_1(T)\right\} +P\left\{ |{\widehat{\theta }}_T-\theta _0|>r_2(T)\right\} . \end{aligned}$$
(A.3)

Now combining (A.2) and (A.3) we prove the Lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Acharya, S.K. On the Rate of Convergence in the Bernstein–von Mises Theorem for M/M/1 Queue. J Indian Soc Probab Stat 22, 181–200 (2021). https://doi.org/10.1007/s41096-021-00099-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-021-00099-x

Keywords

Mathematics Subject Classification

Navigation