Skip to main content
Log in

Solving Pythagorean fuzzy fractional differential equations using Laplace transform

  • Original Paper
  • Published:
Granular Computing Aims and scope Submit manuscript

Abstract

In this research article, we discuss an important class of modern differential equations in the Pythagorean fuzzy environment, called the Pythagorean fuzzy fractional differential equations (PFFDE). Fuzzy fractional differential equations under the generalized Hukuhara Caputo fractional derivative are extended in a Pythagorean fuzzy context to extract their analytical solutions. To solve the PFFDE, we define the Riemann-Liouville fractional integral, the Riemann-Liouville (RL) fractional derivative, the Caputo fractional derivative, and the Laplace transform in a Pythagorean fuzzy fashion. Furthermore, we present the solution procedure for homogeneous and inhomogeneous PFFDEs in the form of theorems. We then extract the closed-form solution of the PFFDE using the Pythagorean fuzzy Laplace transform and the Mittag-Leffler function. We extract two possible solutions for PFFDE based on the type of gH-differentiability and the Pythagorean fuzzy initial conditions. Moreover, we discuss some applications of PFFDE and its graphical representation to ensure the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  • Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal Theory Methods Appl 72(6):2859–2862

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmad MZ, Hassan MK, Abbasbanday S (2013) Solving fuzzy fractional differential equations using Zadeh’s extension principle. Sci World J. https://doi.org/10.1155/2013/454969

    Article  Google Scholar 

  • Ahmad S, Ullah A, Abdeljawad T (2021) Computational analysis of fuzzy fractional order non-dimensional Fisher equation. Phys Scr 96(8):084004

    Article  Google Scholar 

  • Akram M, Ali G (2020) Hybrid models for decision making based on rough Pythagorean fuzzy bipolar soft information. Granul Comput 5(1):1–15

    Article  Google Scholar 

  • Akram M, Khan A (2021) Complex Pythagorean Dombi fuzzy graphs for decision making. Granul Comput 6(3):645–669

    Article  MathSciNet  Google Scholar 

  • Akram M, Shahzadi G (2021) A hybrid decision making model under q-rung orthopair fuzzy Yager aggregation operators. Granul Comput 6(4):763–777

    Article  Google Scholar 

  • Akram M, Habib A, Davvaz B (2019) Direct sum of \(n\) Pythagorean fuzzy graphs with application to group decision-making. J Multi-Valued Log Soft Comput 33(1–2):75–115

    MathSciNet  MATH  Google Scholar 

  • Akram M, Khan A, Ahmed U (2022a) Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making. Granul Comput. https://doi.org/10.1007/s41066-022-00330-5

    Article  Google Scholar 

  • Akram M, Sattar A, Saeid AB (2022b) Competition graphs with complex intuitionistic fuzzy information. Granul Comput 7:25–47

    Article  Google Scholar 

  • Akram M, Shahzadi G, Alcantud JCR (2022) Multi-attribute decision-making with q-rung picture fuzzy information. Granul Comput 7:197–215

    Article  Google Scholar 

  • Allahviranloo T (2020) Fuzzy fractional differential operators and equations: fuzzy fractional differential equations. Springer Nature 397

  • Allahviranloo T, Ahmadi MB (2010) Fuzzy Laplace transforms. Soft Comput 14(3):235–243

    Article  MATH  Google Scholar 

  • Allahviranloo T, Armand A, Gouyandeh Z (2014) Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J Intell Fuzzy Syst 26(3):1481–1490

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Ghaffari M, Abbasbandy S, Azhini M (2021) On the fuzzy solutions of time-fractional problems. Iran J Fuzzy Syst 18(3):51–66

    MathSciNet  MATH  Google Scholar 

  • Arikoglu A, Ozkol I (2009) Solution of fractional integro-differential equations by using fractional differential transform method. Chaos Solit Fractals 40(2):521–529

    Article  MathSciNet  MATH  Google Scholar 

  • Asif M, Akram M, Ali G (2020) Pythagorean fuzzy matroids with application. Symmetry 12(3):423

    Article  Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus: models and numerical methods. Sci World J 3:10–39

    MATH  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151(3):581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Bhrawy AH, Tharwat MM, Yildirim A (2013) A new formula for fractional integrals of Chebyshev polynomials: application for solving multi-term fractional differential equations. Appl Math Model 37(6):4245–4252

    Article  MathSciNet  MATH  Google Scholar 

  • Chang SSL, Zadeh LA (1972) On fuzzy mapping and control. IEEE Trans Syst Man Cybernet 2:30–34

    Article  MathSciNet  MATH  Google Scholar 

  • Dubios D, Prade H (1982) Towards fuzzy differential calculus. Fuzzy Sets Syst 8(3):225–233

    Article  MathSciNet  Google Scholar 

  • Ezadi S, Allahviranloo T (2020) Artificial neural network approach for solving fuzzy fractional order initial value problems under gH-differentiability. Math Methods Appl Sci. https://doi.org/10.1002/mma.7287

    Article  Google Scholar 

  • Kaleva K (1987) Fuzzy differential equations. Fuzzy Sets Syst 24(3):301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Khakrangin S, Allahviranloo T, Mikaeilvand N, Abbasbandy S (2021) Numerical solution of fuzzy fractional differential equation by haar wavelet. Appl Appl Math (AAM) 16(1):14

    MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier 204:1–523

    MathSciNet  MATH  Google Scholar 

  • Magin R (2004) Fractional calculus in bioengineering. Crit Rev Biomed Eng. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10

    Article  Google Scholar 

  • Milici C, Draganescu G, Machado JT (2019) Introduction to fractional differential equations. Springer 25:47–86

    MathSciNet  MATH  Google Scholar 

  • Mondal SP, Roy TK (2015a) System of differential equation with initial value as triangular intuitionistic fuzzy number and its application. Int J Appl Math 1(3):449–474

    MathSciNet  MATH  Google Scholar 

  • Mondal SP, Roy TK (2015b) Generalized intuitionistic fuzzy Laplace transform and its application in electrical circuit. TWMS J of Apl Eng Math 5(1):30–45

    MathSciNet  MATH  Google Scholar 

  • Mondal SP, Goswami A, Kumar S (2019) Nonlinear triangular intuitionistic fuzzy number and its application in linear integral equation. Adv Fuzzy Syst. https://doi.org/10.1155/2019/4142382

    Article  MathSciNet  MATH  Google Scholar 

  • Naz S, Ashraf S, Akram M (2018) A novel approach to decision-making with Pythagorean fuzzy information. Mathematics 6(6):95

    Article  MATH  Google Scholar 

  • Ngo VH (2015) Fuzzy fractional functional integral and differential equations. Fuzzy Sets Syst 280(C):58–90

    Article  MathSciNet  MATH  Google Scholar 

  • Peng X, Luo Z (2021) A review of \(q\)-rung orthopair fuzzy information: bibliometrics and future directions. Artif Intell Rev 54(5):3361–3430

    Article  Google Scholar 

  • Peng X, Selvachandran G (2019) Pythagorean fuzzy set: state of the art and future directions. Artif Intell Rev 52(3):1873–1927

    Article  Google Scholar 

  • Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier 198:62–86

    Google Scholar 

  • Povstenko Y (2015) Linear fractional diffusion-wave equation for scientists and engineers. Birkhauser 460

  • Rahman K (2022) Multiple attribute group decision-making based on generalized interval-valued Pythagorean fuzzy Einstein geometric aggregation operators. Granul Comput. https://doi.org/10.1007/s41066-022-00322-5

    Article  Google Scholar 

  • Salahshour S, Allahviranloo T (2013) Applications of fuzzy Laplace transforms. Soft Comput 17(1):145–158

    Article  MATH  Google Scholar 

  • Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun Nonlinear Sci Numer Simul 17(3):1372–1381

    Article  MathSciNet  MATH  Google Scholar 

  • Salahshour S, Ahmadian A, Senu N, Baleanu D, Agarwal P (2015) On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem. Entropy 17(2):885–902

    Article  MathSciNet  MATH  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24(3):319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Song S, Wu C (2000) Existence and uniqueness of solutions to Cauchy problem of fuzzy ordinary differential equations. Fuzzy Sets Syst 110(1):55–67

    Article  MATH  Google Scholar 

  • Stefanini L, Bede B (2013) Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst 230:119–141

    Article  MathSciNet  MATH  Google Scholar 

  • Ullah K, Mahmood T, Ali Z, Jan N (2020) On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition. Complex Intell Syst 6(1):15–27

    Article  Google Scholar 

  • Van Hoa N, Lupulescu V, Regan DO (2017) Solving interval-valued fractional initial value problems under Caputo \(gH\)-fractional differentiability. Fuzzy Sets Syst 309:1–34

    Article  MathSciNet  MATH  Google Scholar 

  • Van Ngo H, Lupulescu V, Regan DO (2018) A note on initial value problems for fractional fuzzy differential equations. Fuzzy Sets Syst 347:54–69

    Article  MathSciNet  MATH  Google Scholar 

  • Vu H, Hoa NV (2019) Uncertain fractional differential equations on a time scale under granular differentiability concept. Comput Appl Math 38(3):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Vu H, Rassias JM, Van Hoa N (2020) Ulam-Hyers-Rassias stability for fuzzy fractional integral equations. Iran J Fuzzy Syst 17(2):17–27

    MathSciNet  MATH  Google Scholar 

  • Yager RR (2013) Pythagorean fuzzy subsets. In IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) :57-61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

  • Yager RR (2013) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22(4):958–965

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofigh Allahviranloo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M., Ihsan, T. & Allahviranloo, T. Solving Pythagorean fuzzy fractional differential equations using Laplace transform. Granul. Comput. 8, 551–575 (2023). https://doi.org/10.1007/s41066-022-00344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41066-022-00344-z

Keywords

Navigation